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A B S T R A C T   

Wildfires can dramatically alter vegetation cover and soil properties across large scales, resulting in substantial 
shifts in runoff generation, streamflow, and water quality. In September 2020, extensive and high-severity 
wildfires burned more than 490,000 ha of forest land on the westside of the Cascade Mountain Range in the 
Pacific Northwest. Much of the area impacted by these fires is critical for the provision of water for downstream 
aquatic ecosystems, agriculture, hydropower, recreation, and municipal drinking water. We undertook a study to 
evaluate the effects of four of the large high severity wildfires from 2020 (Riverside, Beachie Creek, Lionshead, 
and Holiday Farm) on streamflow in nine burned catchments in western Oregon. We also included four un-
burned, reference catchments in our analysis to enable us to assess post-fire streamflow changes in the burned 
catchments. To quantify the effects of wildfire on the catchment water balance we used publicly available 
streamflow data and estimated precipitation, potential evapotranspiration (PET), and actual evapotranspiration 
(ET), using satellite-based meteorological data. We quantified catchment area burned and burn severity with the 
average differenced normalized burn ratio (dNBR). We compared hydrologic conditions for the pre-fire 
(2001–2020) and post-fire (2021–2022) periods by analyzing catchment runoff ratios, ET ratios (evaporative 
index: quotient of ET divided by precipitation, referred to as EI hereafter), and Budyko curves. We also used 
random forest models to explore factors influencing the variability in EI. During the post-fire period, we observed 
decreases in EI and increases in runoff ratio in the burned catchments. Post-fire declines in EI were positively 
related to burn severity (R2 = 0.70 in 2021; 0.76 in 2022) and area burned (R2 = 0.91 in 2021; 0.95 in 2022), and 
were primarily driven by decreases in ET. Declines in ET were highly variable, ranging from 10.7–40.2 % in the 
first year after the fires and 6.1–32.0 % in the second year after the fires, and were generally related to catchment 
burn severity and area burned. The greatest increases in runoff (16.1 % in 2021 and 19.8 % in 2022) occurred in 
the same catchment. These results were reinforced by the random forest analysis, which illustrated the impor-
tance of burn severity as a predictor of EI. Interestingly, the variability in changes in EI during the post-fire 
period was also associated with other geomorphic factors such as catchment slope, elevation, geology, aspect, 
and pre-fire vegetation type. Since the duration and seasonality of post-fire impacts on hydrology remain un-
certain, our findings bring new insights and guide future studies into the post-fire responses on hydrology that 
are crucial for water and forest management.   

1. Introduction 

In recent decades in many regions of the world, including the west-
ern United States, there have been substantial shifts in wildfire regimes, 
including longer wildfire seasons, increased area burned, and greater 
wildfire severity (Abatzoglou and Williams, 2016; Burke et al., 2021; 
Holden et al., 2018; Westerling, 2016). Fire, as a natural disturbance, is a 
fundamental component of global ecosystems, burning vast areas 

(~300–450 Mha) each year (van der Werf et al., 2006). However, the 
increasing occurrence of large, high severity wildfires has been linked 
with periods of extreme heat and increasing occurrence of drought 
conditions (Abatzoglou et al., 2019, 2017; Jolly et al., 2015). Across the 
western United States, climate change has contributed to an additional 
4.2-million ha of forest area burned between 1984 and 2015 (Abatzo-
glou and Williams, 2016). Rapid and substantial shifts in the wildfire 
regime have increased concerns about the longer-term impacts on 
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biophysical systems and humans, leading to calls for more integrative 
and predictive research to enable mitigation or adaptation efforts 
(Shuman et al., 2022). 

Forests are a crucial source of a reliable water supply to communities 
around the globe (Dudley and Stolton, 2003), providing the majority of 
freshwater in many regions, including the United States (Jones et al., 
2009). Healthy forests provide substantial social and economic benefits 
through provision of a high-quality water supply (Bladon et al., 2014; 
Costanza et al., 1997). However, the recent shifts in wildfire regime and 
growing pressures on water supplies have increased concerns regarding 
the impact of wildfires on water supplies (Hallema et al., 2018a; Hohner 
et al., 2019). As a result, research has increased in recent years, illus-
trating wildfire effects on water quantity and water quality, including 
suspended sediment, nutrients, carbon, and heavy metals (Beyene et al., 
2023; Rhoades et al., 2019; Rust et al., 2018). Wildfires can also affect 
soil hydraulic properties or increase soil water repellency, leading to 
reduced infiltration rates (Moody et al., 2015; Moody and Ebel, 2014; 
Neary, 2011; Thomas Ambadan et al., 2020), and elevated surface 
runoff, erosion, and suspended turbidity (Chen et al., 2020; Ebel et al., 
2012). Many of these effects pose substantial challenges for drinking 
water treatment and can impact aquatic ecosystem health (Emelko et al., 
2016, 2011; Hohner et al., 2019; Warren et al., 2022). 

In recent years, there has also been an increase in the number of 
studies quantifying the effects of wildfires on initial and longer-term 
shifts in hydrological processes (Niemeyer et al., 2020; Poon and 
Kinoshita, 2018). These studies have generally illustrated an increase in 
net precipitation and soil water content due to fire-related decreases in 
interception storage capacity and evapotranspiration from reductions in 
canopy vegetation or ground cover (Zema, 2021). A recent assessment of 
approximately 5,500 wildfires across the contiguous United States 
illustrated substantial post-fire decreases in ET, especially in the western 
United States (Collar et al., 2021). Similarly, Ma et al. (2020) quantified 
a 23–36 % reduction in annual evapotranspiration during the first 15 
years after wildfires in California’s Sierra Nevada, while Poon and 
Kinoshita (2018) observed 11–36 % lower ET in burned catchments 
compared to unburned catchments following the 2011 Las Conchas Fire 
in New Mexico. 

Wildfire impacts on hydrologic processes can also lead to elevated 
runoff generation (Boisramé et al., 2019; Hallema et al., 2018b; Vieira 
et al., 2018; Zituni et al., 2019), increased peak flows, low flows, annual 
water yields, and shifts in the timing of the hydrograph (Beyene et al., 
2021; Lavabre et al., 1993; Robinne et al., 2020; Williams et al., 2022). 
However, there remains substantial uncertainty about the post-fire 
streamflow response. For example, in a study of 168 locations across 
the U.S., regional streamflow in the first five years after wildfire ranged 
from a decrease of 37.1 % to an increase up to 27.4 % (Hallema et al., 
2018b). Similarly, many other studies of wildfire effects on annual water 
yields in different regions and catchment areas have observed no effect 
up to a 450 % increase (Bart, 2016; Niemeyer et al., 2020; Wine and 
Cadol, 2016). In western North America, others have also observed post- 
fire increases in peak flows of 20–290 % (Brogan et al., 2017; Mahat 
et al., 2016) and increases in low flows of 40–1,090 % (Kinoshita and 
Hogue, 2015; Saxe et al., 2018). The variability in post-fire streamflow 
responses has been attributed to site-specific factors including, but not 
limited to, burn severity, percent area burned, post-fire precipitation, 
catchment slope, aspect, and aridity (Moody et al., 2013; Noske et al., 
2016; Rhoades et al., 2011; Wampler et al., 2023). As such, there re-
mains a need to continue to improve our understanding of the complex 
interplay between wildfire, catchment physiographic characteristics, 
and the streamflow response. 

Due to drought conditions, low fuel moisture, low relative humidity 
and high winds, the 2020 Labor Day Fires consisted of five simultaneous 
mega-fires that ultimately burned more than 4,900 km2 of forest land in 
the Oregon Cascades, United States. The occurrence of these 2020 
wildfires allowed us to compare multiple simultaneous large, high 
severity wildfires across catchments with variation in physiography. As 

such, our objectives were to (a) quantify and compare the effects of these 
wildfires on the hydrologic response across nine burned catchments in 
western Oregon, and (b) relate the responses to burn severity, catchment 
area burned, and catchment physiographic characteristics, such as 
elevation, slope, geology, aspect, and vegetation type. To achieve our 
objectives, we applied the Budyko method (Budyko, 1961; Budyko, 
1974; Wang and Hejazi, 2011) to characterize the competition between 
energy and water availability in our study catchments. We then used the 
Budyko curves to characterize and assess the hydrologic responses in 
burned catchments and compared those with unburned catchments over 
the same time period. We also applied random forest models to 
demonstrate the potential wildfire or catchment controls on the hy-
drologic response. 

2. Methods 

2.1. Study catchments 

Our study basins were located in the western Cascade montane 
highlands and lowlands of the Willamette River basin in Oregon. The 
region is characterized by a Mediterranean climate with warm and dry 
summers and wet winters (Kottek et al., 2006). The annual average 
precipitation varies from 1,000 to 3,000 mm due to orographic effects. 
In the lower elevation areas (<200 m), annual 30-year normal temper-
atures range from minimums of 1.0–10.7 ◦C in the winter to maximums 
of 9.0–27.6 ◦C in the summer. In the high elevation areas (>1,800 m) 
temperatures range from minimums of − 8.5–2.7 ◦C in the winter to 
maximums of − 1.1–22.2 ◦C in the summer (PRISM Climate Group, 
2022). The region is dominated by forested lands primarily composed of 
Douglas-fir (Pseudotsuga menziesii) and mountain hemlock (Tsuga mer-
tensiana) tree species (Busing, 2004). This region is mostly composed of 
volcanic and surficial sediments lithology (Madin, 2009). 

In the summer of 2020, a series of large and high-severity wildfires 
burned approximately 494,000 ha in western Oregon, which was the 
second largest wildfire season on record in the region (Rasmussen et al., 
2021). The rapid spread of these fires was facilitated by strong down-
slope east winds and prolonged warm and dry conditions, which per-
sisted for over 60 days (Abatzoglou et al., 2021; Higuera and 
Abatzoglou, 2021). Our study focused on 13 catchments in the Cascade 
Range of Oregon, including nine burned (B1 to B9) and four unburned 
(U1 to U4) catchments (Fig. 1). Our study area included catchments that 
were affected by four wildfires—the Riverside, Beachie Creek, Lions-
head, and Holiday Farm fires—which burned a combined area of ~ 
284,971 ha. Across the four wildfires, 37.1 % of the area burned at high 
severity, 23.8 % burned at moderate severity, 30.0 % burned at low 
severity, while 9.1 % remained unburned (Table S1). These fires burned 
in the Sandy, Clackamas, South Santiam, North Santiam, and McKenzie 
River Basins, all draining into the western side of the Willamette River 
Basin. Within the 13 burned and unburned catchments in our study area, 
there were 124 Hydrologic Unit Code 12 (HUC12) sub-watersheds. 

Across the 13 study catchments, the long-term (2001–2020) average 
annual precipitation ranged from 1,793 mm to 2,453 mm with strong 
orographic effects associated with the Cascade Mountains (Fig. 2). The 
long-term average annual air temperature ranged from 7.1 ◦C to 10.0 ◦C 
(Abatzoglou, 2013). The burned catchments had a range in burn areas, 
burn severities, and hydrogeologic characteristics, which provide a 
unique opportunity to compare the hydrologic response of wildfires in 
multiple catchments (Table 1). 

2.2. Data 

All burned and unburned catchments were delineated with the 
ArcHydro extension to ArcGIS 10.5 using the locations where long-term 
streamflow data were available (Table 1). To evaluate the hydrologic 
response to wildfire disturbances, we assembled data layers for precip-
itation, actual ET (AET), potential ET (PET), and streamflow for the pre- 

H. Kang et al.                                                                                                                                                                                                                                    



Journal of Hydrology 639 (2024) 131612

3

fire (2001–2020) and post-fire (2021–2022) periods. Precipitation and 
PET data were derived from a high-resolution (4 km) gridded dataset of 
surface meteorological variables (gridMET; Abatzoglou, 2013), and a 
total of 572 pixels were available for burned and unburned catchments. 
We grouped annual precipitation into dry years (9 to 11 years average; 
Fig. 2b) and wet years (9 to 11 years average; Fig. 2c) by comparing the 
annual precipitation with the long-term mean annual precipitation 
(2001–2020). The spatial pattern of precipitation during the first post- 
fire year (2021; Fig. 2d) was visually similar to the dry years, while 
the precipitation in the second post-fire year (2022; Fig. 2e) was similar 
to the wet years. In addition, remote sensing-based ET data from the 
Operational Simplified Surface Energy Balance (SSEBop; Senay et al., 
2013) was applied to calculate the ET ratio and was used in the Budyko 
curve analyses. The SSEBop data was highly correlated with observed 
ET, and it has been used for some studies of post-fire hydrology (Blount 
et al., 2020; Collar et al., 2021; Poon and Kinoshita, 2018). However, 
since the SSEBop data is particularly sensitive to land surface tempera-
ture as an input (Chen et al., 2016) due to reduced albedo and the 
resultant rise in remotely sensed land surface temperatures within 
burned forests (Rother and De Sales, 2021; Rother et al., 2022), the ET 
estimates may exhibit uncertainties in areas burned at moderate to high 
severities. Additionally, further uncertainties could stem from the lack 
of proper validation of the SSEBop data with ground observations in the 
forests of the Pacific Northwest. Despite these uncertainties, the SSEBop 
data was utilized in this study because it provided long-term (2000 to 
2022) and high-resolution (1 km) ET estimates. Furthermore, its reli-
ability has been extensively validated across various regions of the 
United States (Collar et al., 2021; Poon and Kinoshita, 2018). The 
burned perimeters and burn severity data were provided by the Moni-
toring Trends in Burn Severity (MTBS; https://www.mtbs.gov) website. 
The burn severities were defined by the differenced Normalized Burn 
Ratio (dNBR; Key and Benson, 2006). For the burned catchments, the 
area burned ranged from 10.4 % to 94.2 %. The mean dNBR ranged from 
53.5 to 565.1 with larger values of dNBR representing greater burn 

severity. 

2.3. Analysis of hydrologic responses 

The Budyko curve is an approach that enables exploration of the 
interactions between climate, vegetation, and catchment water yield 
(Budyko, 1974, 1961). The curve is based on the relationship between 
catchment PET and AET with both parameters normalized by precipi-
tation. Previous studies have used the Budyko framework to assess the 
impacts of climate shifts and landscape disturbances on catchment hy-
drology and streamflow (Guo et al., 2021; Hampton and Basu, 2022; 
Jaramillo et al., 2018; Lee, 2020; Li et al., 2018; Wang and Hejazi, 2011; 
Wang and Stephenson, 2018). 

We provide a conceptual diagram to summarize the principle of the 
Budyko curve method in Fig. S1. On the x-axis is the dryness index (DI), 
which characterizes the drying power of the atmosphere and the supply 
of water in the catchment, calculated as the ratio of PET to precipitation. 
A DI value greater than one indicates a dry, water-limited catchment, 
whereas a DI value less than one indicates a humid, energy-limited 
catchment (Fig. S1a). Comparatively, the evaporative index (EI) pro-
vides information about the potential water deficit or surplus in a 
catchment and is calculated as the ratio of AET to precipitation. A 
greater EI value indicates a larger proportion of precipitation that is 
involved in ET, resulting in less water available for streamflow. The 
Budyko curve can be developed for catchments to assess the degree to 
which disturbances, such as wildfire, result in deviations in the re-
lationships between ET and precipitation, which would be indicative of 
shifts in water partitioning. Moreover, Budyko curves may be used to 
characterize catchment recovery in the water balance. 

In our study, we applied the Budyko curve to nine catchments in 
western Oregon impacted by the 2020 Labor Day fires and four un-
burned, reference catchments. We fit our data to linear models rather 
than the non-linear parametric models, which are typically used to 
model data in Budyko space. The parametric models are defined by 

Fig. 1. (a) Map showing the location of our study sites (red circle) in the western United States. (b) Map of the study catchments. Red and transparent polygons 
represent the burned areas of the four wildfires burned in 2020 (from north to south: Riverside, Beachie Creek, Lionshead, and Holiday Farm). Red and black lines 
indicate the boundary lines of burned and unburned catchments, respectively (B: Burned, U: Unburned). Also, red triangles indicate the USGS gauging stations for the 
burned catchment, and the black circles represent the unburned catchments. 
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various non-linear equations to enforce structure on the Budyko model 
that incorporates physical assumptions about catchment hydrology, 
namely that the y-axis (EI) should asymptotically approach 1 (the water 
limit), and that catchment EI is more sensitive to changes in precipita-
tion for lower values of DI (x-axis), but is energy limited at this range 
(Reaver et al. 2022). However, the mathematical formulation of these 
parametric models is arbitrary and does not preclude the use of other 
methods to fit data in Budyko space (Reaver et al. 2022). Thus, while not 
the most common approach, the use of linear models are acceptable 
since our data does not approach the energy- or water-limited bound-
aries of the parametric Budyko models, and the DI in the post-fire years 
was within the range of pre-fire data. Additionally, our models reason-
ably meet the assumptions of linear regression regarding independence, 
normality of residuals, and homoscedasticity of variances. 

To assess the post-fire impacts on catchment water partitioning, we 
quantified the changes in EI as the vertical Budyko deviation (Δd). This 
approach assumes that in the absence of a substantial catchment 
disturbance, such as wildfire, that the annual DI and EI will plot along a 

Budyko-type curve. Disturbances will result in deviation from the curve. 
As such, we calculated Δd as the difference between the fitted and 
measured EIs (Equation 1). 

Δd = EIf − EIm (1) 

where EIf is the fitted EI, and EIm is the measured EI. More detailed 
descriptions of the use of the Budyko deviation approach are available 
from Hampton and Basu (2022). 

We adopted an approach that involved using the vertical deviation 
(Δd) from linear models fitted in Budyko space to estimate the post-fire 
changes in EI. This approach enabled us to observe the pre-fire vari-
ability in Δd and establish confidence intervals around pre-fire EI ex-
pected values. Although our approach did not directly provide a p-value 
that quantified evidence of whether the post-fire years were from a 
different distribution, we calculated the probability of a standardized 
(internally studentized) residual occurring under the null hypothesis 
that the post-fire points were from the same distribution as the pre-fire 
data. To further test our hypothesis that wildfire significantly affected EI 

Fig. 2. Maps of the (a) long-term (2001–2020) mean annual precipitation, (b) dry years mean annual precipitation, (c) wet years mean annual precipitation, (d) 2021 
(first year post-fire) annual precipitation, and (e) 2022 (second year post-fire) annual precipitation. The 13 catchment boundaries are shown on the maps with red 
lines indicating the burned catchments and black lines indicating the unburned catchments. 
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and Budyko relationships, we fit linear models to post-fire Δd values 
against catchment burned area and burn severity for all post-fire years. 

Runoff and ET account for the loss of moisture from catchments and 
are sensitive to wildfire disturbances (Bart, 2016; Poon and Kinoshita, 
2018). Thus, the overall hydrologic response to wildfires can be 
measured by comparing pre-and post-fire runoff and EI (Poon and 
Kinoshita, 2018; Saxe et al., 2018), with the magnitudes of difference 
deviating depending on the burn severity and catchment area burned 
(Wang et al., 2020). Therefore, we also calculated the annual runoff 
ratio for each catchment as the ratio of annual runoff (streamflow) to 
annual precipitation during each water year (October to September). To 
calculate the annual runoff ratio, we used observed streamflow from the 
USGS stations (Table 1) and gridMet precipitation. 

Both runoff ratio and EI during the first post-fire year (2021) were 
compared with the average of dry years for the pre-fire period 
(2001–2020). We also compared runoff ratios and EI during the second 
post-fire year (2022) with the average of the pre-fire wet years. In 
addition, we computed bootstrapped 95 % confidence intervals for the 
change in runoff ratios for 2021 compared to pre-fire dry years (less than 
mean precipitation) and 2022 compared to the pre-fire wet years 
(defined as having greater than mean precipitation). We then fit linear 

models to the change in runoff ratios vs. burned area and burn severity 
for the wet and dry post-fire years. 

2.4. Analysis of predictor variables of hydrologic response 

We ran random forest models for both the pre-fire and post-fire pe-
riods to explore the strength of relationships between EI and catchment 
physiographic characteristics. Random forests are an ensemble machine 
learning technique that aggregates predictions from many decision trees 
and are useful for modeling non-linear relationships and interactions 
among predictor variables (Breiman, 2001). In our analysis, we were 
primarily interested in using variable importance outputs from the 
random forest model to estimate the importance of topographic, vege-
tation, geologic, and hydrologic variables in predicting EI across the 124 
HUC12 sub-watersheds in our study area. Of these 124 sub-watersheds, 
63 were unaffected by fire, while 61 were at least partially burned by 
one of the 2020 fires. 

We investigated nine features with spatio-temporal coverage across 
our catchments of interest that represent physical influences on catch-
ment level hydrology in western Oregon forests (Table 2). These 
included mean catchment burn severity (mean dNBR), geologic terrane, 

Table 1 
General descriptions of the burned and unburned watersheds (USGS: United States Geological Survey).  

Catchment 
Numbers 

Basin USGS ID Mean elevation 
(m) 

Area 
(km2) 

Annual precipitation (mm; October to 
September) 

Percent watershed area 
burned (%) 

Mean 
dNBR 

B1 Clackamas 14,209,500 1,077  1266.3 1,734  11.1  53.5 
B2 Clackamas 14,210,000 852  1766.6 1,817  23.3  293.0 
B3 Molalla- 

Pudding 
14,200,000 590  845.7 1,843  36.5  142.9 

B4 Molalla- 
Pudding 

14,201,500 537  150.3 1,794  36.8  113.0 

B5 Molalla- 
Pudding 

14,200,700 514  188.9 1,619  15.7  40.8 

B6 North Santiam 14,179,000 1,151  273.6 1,924  79.7  366.0 
B7 North Santiam 14,182,500 822  285.2 2,185  94.2  565.1 
B8 North Santiam 14,183,000 1,019  1691.8 2,072  52.8  135.9 
B9 McKenzie 14,162,500 1,170  2409.4 1,937  10.4  52.7 
UB1 Sandy 14,137,000 1,004  259.1 2,211  0.00  0.0 
UB2 South Santiam 14,188,800 566  280.3 2,003  0.00  0.0 
UB3 South Santiam 14,185,900 918  679.5 2,386  0.00  0.0 
UB4 South Santiam 14,185,000 897  450.1 2,042  0.00  0.0  

Table 2 
Nine metrics for random forest analysis.  

Metrics Variable 
type 

Spatial 
aggregation 

Description Data source Units Link 

Burn severity continuous mean differenced normalized burn 
ratio 

Monitoring Trends in Burn 
Severity (MTBS) 

dNBR https://www.mtbs.gov 

Geologic 
Terrane 

categorical mode age and source of geologic 
parent material 

Oregon Department of 
Geology and Mineral 
Industries (DOGAMI) 

NA https://www.oregongeology. 
org/pubs/dds/p-OGDC-7.htm 

Lithology categorical mode description of rock type and 
mineralogy of parent material 

Oregon Department of 
Geology and Mineral 
Industries (DOGAMI) 

NA https://www.oregongeology. 
org/pubs/dds/p-OGDC-7.htm 

Elevation continuous mean Elevation US Geological Survey 
(USGS) 

meters −

Slope continuous mean Slope US Geological Survey 
(USGS) 

degrees −

Northing continuous mean North-South component of 
aspect. 

US Geological Survey 
(USGS) 

ranges from 1 (north 
facing) to − 1 (south 
facing) 

−

Vegetation 
type 

categorical mode Describes existing vegetation 
type on landscape 

LANDFIRE terrestrial ecological 
systems classification by 
NatureServe 

https://landfire.gov/getdata. 
php 

Succession 
class 

categorical mode current vegetation condition 
with respect to historical 
successional states 

LANDFIRE NA https://landfire.gov/getdata. 
php 

Soil 
hydrologic 
group 

categorical mode runoff potential of soils from 
NRCS 

US Department of 
Agriculture (USDA) 

NA https://data.nal.usda.gov/da 
taset/united-states-general-so 
il-map-statsgo2  
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lithology, elevation, slope, north–south component of aspect (northing), 
soil hydrologic group, dominant existing (pre-fire) vegetation type, and 
succession class. We narrowed our focus to this set out of many possible 
features by excluding highly collinear variables for two reasons: first, 
correlations among features can decrease variable importance values 
from random forest models for both collinear variables (Debeer and 
Strobl, 2020; Strobl et al., 2007), and second, we only had ~ 120 
catchments of study, so we limited the number of predictor variables to 
reduce the dimensionality of the problem. For example, we did not 
consider percent catchment area and mean catchment burn severity 
together in the model since they were highly collinear (R2 = 0.94). We 
accounted for these variables by calculating catchment burn severity 
using a value of 0 for unburned pixels, thus incorporating spatial het-
erogeneity of burn severity and burned area in one metric. 

We used the ranger R package to fit two random forest models—one 
for the 20-year pre-fire period (water years 2001–2020) and one for the 
post-fire period (water years 2021–2022) (Wright and Ziegler, 2017). 
We tuned pre-fire and post-fire model hyperparameters using k-fold 
cross validation to optimize model accuracy, which we measured as 
mean square error (MSE) on the out-of-bag dataset. Variable importance 
was determined using the permutation importance on the out-of-bag 
dataset. We sampled observations without replacement to limit bias in 
permutation variable importance measures (Strobl et al., 2007). After 
fitting, we created partial dependence plots using the pdp R package to 
visualize the direction and shape of the marginal relationships between 
predictor variables and modeled responses (Greenwell, 2017). We per-
formed all our statistical analyses in R (R Core Team, 2020). 

3. Results 

3.1. Hydrologic response to wildfire 

Our Budyko curve analysis illustrated relatively small annual de-
viations (Δd) of the evaporative index (EI) in the unburned, reference 
catchments (Table 3). For example, the mean Δd in 2021 (the first post- 
fire year) across all our unburned reference catchments was 0.06 ± 0.01 
(SD; e.g., Fig. 3a and 3b, Figs. S2). In 2022 (the second post-fire year), 
the mean Δd across all our unburned reference catchments was 0.01 ±
0.01 (SD). However, we observed increasingly greater vertical de-
viations of EI from the fitted line of the Budyko curve in catchments with 
greater burned areas and burn severities (Fig. 3c to 3f, Figs. S3a to S3e). 
For example, in 2021 the mean Δd in catchments with < 20 % area 
burned was 0.10 ± 0.01 and in catchments with > 20 % area burned was 
0.14 ± 0.02. Similarly, in 2022 the mean Δd in catchments with < 20 % 
area burned was 0.02 ± 0.01 SD and in catchments with > 20 % area 
burned was 0.06 ± 0.02 (SD). 

Linear regression plots of the relationships between the vertical de-
viation from the Budyko curve (Δd) and average dNBR and area burned 

also illustrated a positive relationship. Statistically, there was strong 
evidence for a relationship between average dNBR and Δd (F = 16.1, p <
0.05, n = 9), with greater overall deviation and a steeper slope to the 
relationship in the first post-fire year (Fig. 4a). Similarly, there was 
strong evidence for the relationship between catchment area burned and 
Δd (F = 74.2, p < 0.05, n = 9) and also greater overall deviation and a 
steeper slope to the relationship in the first post-fire year (Fig. 4b). The 
magnitudes of Δd were lower in 2022 due to the larger precipitation 
amount in 2022, which led to horizontal shifts in 2022 that closed in on 
the fitted lines. 

In addition, we assessed the impacts of wildfire disturbances on 
hydrology by examining relationships between changes in EI and DI. 
Spatial maps and box plots of the EI differences between the first post- 
fire year (2021) and the dry year average (Fig. 5a) showed distinct EI 
reductions in the burned areas. For example, while the EI difference 
between 2021 and dry year average in the unburned area was − 0.05 ±
0.05 (SD), this difference was − 0.18 ± 0.15 (SD) in the burned area. The 
same was observed between the second post-fire year (2022) and the wet 
year average (WYA) (Fig. 5b). While the EI difference between 2022 and 
wet year average in the unburned area was − 0.03 ± 0.03 (SD), this 
difference was − 0.10 ± 0.08 (SD) in the burned area (Fig. 6a). Besides, 
we compared the EI differences between post-fire years and long-term 
average (2001–2020) (Fig. 6b). In the unburned area, difference be-
tween 2021 and long-term average was 0.01 ± 0.05 SD, and 2022 and 
long-term average was − 0.08 ± 0.04 (SD). In contrast, EI reductions in 
the burned areas were much higher than in the unburned areas in 2021 
(− 0.11 ± 0.13 SD) and 2022 (− 0.15 ± 0.09 SD). The spatial patterns of 
DI in 2021 were consistent with the dry years, while the spatial patterns 
of DI in 2022 were consistent with the wet years (Fig. S4a). However, the 
spatial patterns of EI in the burned areas were not consistent with the 
dry and wet years (Fig. S4b), and they were derived by vegetation 
removal and following ET reduction. These results indicated that the EI 
decreases in the burned areas were substantially greater than those in 
the unburned areas, with the magnitude of the differences in the first 
post-fire year being greater than the second post-fire year. 

We also compared the pre- and post-fire runoff ratio and their dif-
ferences in burned and unburned catchments to investigate the impacts 
of different wildfire characteristics. Bar charts of the runoff ratio in the 
dry and wet years averages and post-fire years in the burned catchments 
showed an overall increase in runoff ratio during the post-fire period 
compared to the dry and wet years average, with larger burned areas 
showing higher magnitudes of increase (Fig. S5–S6). Specifically, some 
catchments with low burned areas showed slight decreases or no 
changes in runoff ratio. For example, during the first post-fire year 
(2021), the runoff ratio of the B1 catchment (burned area: 11.1 %) was 
0.71, which was 5.3 % lower than the dry years average (0.75) during 
the pre-fire period. However, the runoff ratio of the B7 catchment 
(burned area: 94.2 %) was 1.11, which was 14.4 % higher than the dry 
years average (0.97). Those results were consistent with the second post- 
fire year (2022). The runoff ratio of the B1 catchment was 0.70, which 
was 9.1 % lower than the wet years average (0.77), but the runoff ratio 
of the B7 catchment was 1.19, which was 19.0 % higher than the wet 
years average (1.00). 

Furthermore, runoff ratio differences (post-fire minus pre-fire) in 
catchments with > 20 % catchment area burned were greater than those 
with burned areas of < 20 % of the watershed (Fig. S5). During the first 
post-fire year, the average runoff ratio difference in catchments with <
20 % area burned was 0.003 ± 0.067 (SD), while the difference in 
catchments with > 20 % area burned was 0.062 ± 0.052 (SD). In 2022, 
during the second post-fire year the average runoff ratio difference in 
catchments with < 20 % area burned was − 0.030 ± 0.040 (SD), while 
the difference in catchments with > 20 % area burned was 0.107 ±
0.063 (SD). In the unburned catchments, we observed slight increases or 
decreases in runoff ratio, except for the U4 catchment in 2022 (0.87). 
The average runoff ratio differences were 0.030 ± 0.032 (SD) in 2021 
and 0.043 ± 0.039 (SD) in 2022 (Fig. S6). We observed overall increases 

Table 3 
Vertical deviations of EI from the fitted line (Δd) for the burned and unburned 
catchments during the post-fire period.  

Catchment Average 
dNBR 

Burned area of the 
watershed (%) 

Δd in 
2021 

Δd in 
2022 

B1 53.5 11.1  0.090  0.030 
B2 293 23.3  0.103  0.038 
B3 142.9 36.5  0.123  0.045 
B4 113 36.8  0.107  0.043 
B5 40.8 15.7  0.090  0.020 
B6 366 79.7  0.185  0.090 
B7 565.1 94.2  0.178  0.090 
B8 135.9 52.8  0.130  0.052 
B9 52.7 10.4  0.107  0.014 
U1 0 0  0.056  0.015 
U2 0 0  0.065  0.008 
U3 0 0  0.050  0.004 
U4 0 0  0.076  − 0.003  
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in runoff ratio with higher dNBR and burned area based on linear re-
gressions between bootstrapped mean change in runoff ratio plotted 
against average catchment dNBR and burned area, and clear positive 
relationships were found between these fire characteristics and runoff 
ratio differences during the post-fire periods within confidence intervals 
of dry and wet years (Fig. 7). For example, the relationship between 
burned area and runoff ratio differences in 2021 (R2 = 0.48, F = 6.34, p 
< 0.05) and 2022 (R2 = 0.87, F = 48.38, p < 0.05) was stronger than 

those of dNBR and runoff ratio differences in 2021 (R2 = 0.27, F = 2.64, 
p = 0.15) and 2022 (R2 = 0.66, F = 13.68, p < 0.05). 

During the post-fire period, higher magnitudes of EI decrease were 
also correlated with larger burned areas (Fig. S7–S8). For example, 
during the first post-fire year (2021), EI of the B5 catchment (burned 
area: 15.7 %) was 0.37, which was 15.9 % lower than the dry years 
average (0.44). Yet, EI of the B6 catchment (burned area: 79.7 %) was 
0.30, which represented a 33.3 % reduction of EI compared to the dry 

Fig. 3. Budyko curves (green line) of the evaporative index (EI) versus dryness index (DI) for representative burned and unburned catchments—the curves for the 
other 7 study catchments are provided in the supplemental materials. The black dots represent the pre-fire period (2001–2020), while the red and orange triangles 
represent the first (2021) and second (2022) post-fire years, respectively. 

Fig. 4. Linear regression relationships between the vertical deviation (Δd) from the Budyko curve for the nine burned and four unburned study catchments during the 
pre-fire years (2001–2020: black circle), first post-fire year (2021; red triangle), and second post-fire year (2022; orange triangle). The relationships for Δd are shown 
for (a) average dNBR and (b) percent of catchment area burned. 
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years average (0.45). Similar trends were found in the second post-fire 
year (2022). EI of the B5 catchment during the second post-fire year 
was 0.32 (8.5 % reduction), while for the B6 catchment EI was 0.28 
representing a reduction of 22.2 % in EI reduction. 

Finally, we compared the average EI difference with < 20 % and >
20 % area burned, and larger EI differences were observed in the greater 
burned catchments. In 2021, the average EI difference was 0.074 ±
0.013 (SD) with < 20 % area burned, but the EI difference with > 20 % 
area burned was 0.101 ± 0.035 (SD). During the second post-fire year, 
the average EI difference with < 20 % and > 20 % area burned were 
0.026 ± 0.014 (SD) and 0.060 ± 0.019 (SD), which were also consistent 

with the first post-fire year. In the unburned catchments, we observed 
minor decreases in EI compared to the average EI difference with > 20 % 
area burned. The average EI differences were 0.029 ± 0.015 (SD) in 
2021 and 0.015 ± 0.020 (SD) in 2022. Consistently, higher decreases in 
EI were observed in 2021 than 2022 due to more precipitation in 2022 
responsible for the horizontal shifts in DI (x-axis of the Budyko frame-
work) (Fig. S7). 

3.2. Predictor variables of the hydrologic response to wildfire 

In the pre-fire period, elevation was the most important predictor of 

Fig. 5. Maps of the difference in evaporative index (EI) between (a) the first post-fire year (2021) and the dry year average and (b) the second post-fire year (2022) 
and the wet year average. Purple to light purple areas indicate decreases in EI during the post-fire period, while light green to green areas represent increases in EI. 

Fig. 6. Box plots for the difference in evaporative index (EI) between each of the two post-fire years (2021 and 2022) and the dry year and wet year averages, and 
long-term average from the pre-fire period B: Burned area, U: Unburned area, DYA: Dry years average, WYA: Wet years average, LTA: Long-term average. 
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EI, followed by slope, geologic terrane, and aspect northing. Predictors 
vegetation type, succession class, lithology, and soil hydrology all had 
relatively low predictive importance for EI during the pre-fire period 
(Fig. 8). In the post-fire period, burn severity was the most important 

predictor of EI, while elevation dropped to the third most important 
predictor, following slope (Fig. 8). Except for the addition of burn 
severity in the post-fire model, and the switching of importance between 
elevation and slope variables (elevation dropped to 3rd, while slope 

Fig. 7. Plots of the relationships between (a) bootstrapped mean change in runoff ratio during the first post-fire year (2021) and mean dNBR, (b) bootstrapped mean 
change in runoff ratio during the first post-fire year (2021) and percent of catchment area burned, (c) bootstrapped mean change in runoff ratio during the second 
post-fire year (2022) and mean dNBR, and (d) bootstrapped mean change in runoff ratio during the second post-fire year (2022) and percent of catchment area 
burned. The colored dots indicate bootstrapped the mean differences while the lines indicate the 95% confidence intervals. 

Fig. 8. Random Forest variable importance of pre- and post- fire predictor variables for predicting evaporative index (EI) in the burned and unburned watersheds. 
Variable importance was quantified as the percent increase in mean square error (MSE) when values of one predictor variable were randomly permuted and EI was 
predicted from this permuted model. Burn severity was not included in the pre-fire model. 
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jumped to 2nd), the remaining variables had roughly the same relative 
importance as the pre-fire model (Fig. 8). The random forest model for 
the pre-fire period explained about half of the variability (pseudo R2 =

0.51) in EI, while the model of the post-fire period explained more 
variability (pseudo R2 = 0.65), potentially due to the impact of fire on EI 
across the landscape. Partial dependence plots showed that EI tended to 
decrease as burn severity increased in our model, with the steepest 
decrease occurring in low to moderately burned watersheds (Fig. 9). 
Higher elevations were also predicted to have lower EI, but this effect 
was strongest at elevations above 1,500 m. 

4. Discussion 

In our study, we found that both burn severity and the percentage of 
catchment area burned were key variables for estimating runoff and ET 
changes in burned catchments in the Oregon Cascades. When we 
analyzed the Budyko curve, the most substantial reductions in the 
evaporative index (EI) and increases in runoff ratio occurred in catch-
ments with high burn severity and percent area burned (>20 %). 
Comparatively, there was minimal or no changes in EI or the runoff ratio 
in catchments with less area burned (<20 %) or in catchments that were 
unburned. Our observations align with Hallema et al. (2018b), who 
observed a burned area threshold of 19 % resulted in increased 
streamflow in a study of 168 wildfires across the United States. Hampton 
and Basu (2022) also observed similar results when applying the Budyko 
approach to several fire events in California. Other studies have 
consistently shown that the severity of burns and the extent of the 
affected area are the most crucial factors that determine the streamflow 
responses. For instance, Long and Chang (2022) found that watersheds 
with the highest percentage of area burned experienced the largest 
changes in runoff coefficients in the first year after the Labor Day fires in 
Oregon. Similarly, Niemeyer et al. (2020) observed an increase in 
annual discharge across all three catchments in the Pacific Northwest in 
the first seven years after wildfire and post-fire forest management. Saxe 
et al. (2018) examined 82 burned watersheds in the western United 
States and found strong positive relationships between burn severity, 
percent area burned, and increases in runoff ratios. Furthermore, post- 
fire runoff ratios increased in areas burned at high severity in seven 
watersheds in New Mexico (Moody et al. 2008). However, the effects of 
wildfires on streamflow responses have been highly variable, which may 

be due to the complex interaction between burn characteristics, catch-
ment physiographical characteristics, and differences in post-fire 
climate (Saxe et al., 2018; Long and Chang, 2023). For instance, post- 
fire precipitation was a critical factor in determining the post-fire hy-
drological response at our studied catchments. Both burned and un-
burned catchments exhibited horizontal shifts in the Budyko curve 
between 2021 and 2022, as more precipitation in 2022 influenced a 
decrease in DI. Compared to 2021, there was 18.7 % to 42.0 % more 
precipitation in 2022 in the burned and unburned catchments, and the 
precipitation-induced reduction in Δd in 2022 ranged from 0.060 to 
0.095, which accounted for 49.7 % to 86.5 % of the Δd in 2021. 

Despite the influence of precipitation between the two study years, 
the shifts in the Budyko curve and runoff ratio responses to wildfire 
appear to be influenced by a combination of the wildfire characteristics 
and catchment characteristics. The results of our random forest analysis 
indicated that burn severity was the most critical factor influencing 
changes in EI after wildfires in the western Cascades of Oregon. Spe-
cifically, mean dNBR was the strongest driver of EI across study catch-
ments in the post-fire period. The partial dependence plot of EI vs. mean 
dNBR demonstrated a steep decline in EI from unburned catchments to 
those burned at moderate severity (Fig. 8), followed by a stabilization of 
EI through moderate and higher burn severities. While the negative 
correlation between EI and burn severity was expected (Hampton and 
Basu, 2022), interestingly catchments burned at high severity had a 
similar post-fire response in EI as catchments burned at moderate 
severity. The decreasing trend in EI in catchments burned at low severity 
was potentially linked to the post-fire decline in canopy interception and 
evapotranspiration (Eidenshink et al 2007). However, there may be a 
threshold burn severity beyond which fire did not further affect ET 
processes. This threshold is visible in Fig. 8 and may also be somewhat 
evident for runoff ratios in Fig. 7, particularly in 2022. Another possi-
bility is that ET estimates from the SSEBop model were less accurate in 
highly burned areas of Pacific Northwest forests. Poon and Kinoshita 
(2018) observed decreased correlation between SSEBop and Ameriflux 
towers in burned forests in New Mexico, though they indicated the 
SSEBop model was accurate enough to estimate ET across their study 
area. Generally, the SSEBop model has been provided a reliable tool for 
estimating ET on a large scale; however, the accuracy of these estimates 
may be influenced by other factors, including land surface temperature 
and reference evapotranspiration values (Chen et al., 2016). SSEBop is 

Fig. 9. Partial dependence plot showing the estimated direction and magnitude of the nonlinear relationship between mean dNBR and the evaporative index (EI) 
from the random forest model. Low-Moderate-High severity class breaks are from MTBS classification of dNBR data. The rug plot indicates the realized values of 
dNBR from our study watersheds. 
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particularly sensitive to land surface temperature as an input, as any 
pixel that has land surface temperature equal to the calibrated hot 
reference temperature (Th) will have actual ET of 0 for that measure-
ment period (McShane et al., 2017; Senay et al., 2013). This sensitivity 
to input could be particularly important in areas burned at moderate to 
high severity due to decreases in albedo and corresponding increases in 
remote sensed land surface temperatures and surface energy balances in 
burned forests (Rother and De Sales, 2021; Rother et al., 2022; Vera-
verbeke et al., 2012). Theoretically, high land surface temperatures after 
fire input into the pre-fire calibrated SSEBop model could result in 
predictions of 0 ET, which could explain the lower boundary on EI in the 
moderate and high severity burned watersheds. 

In addition to fire severity, elevation and slope were also important 
predictors of changes in EI, followed by geologic terrain, aspect 
northing, vegetation type, succession class, lithology, and soil hydrolo-
gy. The importance of the terrain characteristics was likely related to the 
strong orographic precipitation regimes in the western Cascades of 
Oregon, where annual precipitation varies from 1,000 to 3,000 mm 
across our study area (Schermerhorn, 1967). In addition, total annual 
precipitation and aspect may represent primary controls over the inter- 
annual variation in evapotranspiration in the western Cascades (Garcia 
and Tague, 2015), thus, influencing streamflow responses. Similarly, 
vegetation type and succession class have previously been noted as 
important controls over the water budget in our study region (Post and 
Jones, 2001). 

It is not surprising that differences in geology across our study 
catchments influenced the runoff ratio as geology is known to exert 
substantial influence on groundwater transit times, catchment storage, 
and streamflow in our study region (Jefferson et al., 2006; Jefferson 
et al., 2010; Pfister et al., 2017). Furthermore, geologic influences on 
topography, soil type, and rock content can influence soil volumetric 
water content (Jarecke et al., 2021). In the Pacific Northwest, trees often 
rely on a combination of soil water and bedrock water storage, partic-
ularly during the summer dry season (Hahm et al., 2022). Thus, 
improved spatial data products on soil moisture could be advantageous 
to improve estimates of water availability for post-fire ET and vegetation 
regrowth after wildfires (Jensen et al., 2018; Thomas Ambadan et al., 
2020). Indeed, due to the substantial scale of the 2020 Labor Day Fires in 
Oregon, there was a limited tree seedling supply from nurseries, which 
may have delayed recovery in some areas. Moreover, due to the high 
burn severity, steep slopes, and high elevation of many areas in our 
study region, regeneration of vegetation could be challenging, delaying 
the post-fire hydrologic recovery (Halofsky et al., 2020). Furthermore, 
hydrologic recovery can be highly variable with individual site char-
acteristics in the Mediterranean climate (Wagenbrenner et al., 2021). 
Although some forests may experience relatively quick understory 
development, evidence from interior Pacific Northwest forests indicates 
that a return to pre-fire vegetation conditions could take over 50 years, 
with evapotranspiration (ET) requiring up to 40 years to revert to pre- 
fire levels (Niemeyer et al., 2020). 

Our study adds to the literature by applying the Budyko framework 
to understand post-fire changes in EI in the Pacific Northwest, a region 
where it has not been applied before in a post-fire context. In addition, 
deriving EI from SSEBop remote sensing products (Senay et al., 2013) for 
un-gauged HUC12 watersheds increased the number of study water-
sheds and, thus, the range of catchment area burned, burn severities, 
and watershed characteristics across the study region. The broader 
range of catchment factors improved our analysis as factors such as 
changes in vegetation cover, plant water uptake, evapotranspiration, 
soil hydrophobicity, and rainfall-runoff dynamics may influence hy-
drologic processes in burned watersheds (Atchley et al. 2018). The na-
ture and extent of the wildfire may also influence the hydrologic 
response, and studies examining the links between burn area and spe-
cific hydrologic parameters are just beginning to emerge (Havel et al. 
2018; Atchley et al. 2018). Using remote sensed ET allowed improve-
ments to our estimates of the importance of pre- and post-fire EI drivers 

across burned and unburned watersheds, which is crucial in determining 
areas that are vulnerable to post-fire effects and informing land man-
agement decisions. 

It is important to acknowledge other areas of uncertainty associated 
with the results of our study. For instance, Senay et al. (2022) found the 
overestimation of ET in wet regions and underestimation in dry regions 
from the SSEBop model. Also, potential uncertainties may arise from the 
ET estimates in the western Cascades in Oregon. Even though the pre- 
and post-fire ET estimates from the SSEBop model were validated for the 
multiple wildfires in New Mexico by comparing with AmeriFlux towers 
(Poon and Kinoshita, 2018), the ET estimates for the 2020 Labor Days 
fires were not validated yet due to lack of ground observations in the 
burned areas. Besides, since the ET estimates from SSEBop are based on 
the MODIS 8-day composite 1-km resolution land surface temperature 
product, uncertainties in ET estimates may be related to the coarse 
resolution of the input temperature values from MODIS as well as its 
averaged temporal variability within an eight-day window. ET models 
based on remote sensing observations with coarse spatiotemporal res-
olution input data, such as SSEBop, may exhibit error propagation from 
the input data to the output ET estimates, which has been also observed 
in other models (Ferguson et al., 2010). Furthermore, it is important to 
consider the potential impact of dams and reservoirs in the region, 
which can significantly alter downstream flow patterns (Habets et al., 
2018), and thus affect annualized runoff ratios. Future studies should 
explore how uncertainties in ET estimates after a fire event can be 
quantified, how the impact of reservoirs can be better understood, and 
how soil moisture improves the random forest model. In addition, this 
study only focused on the hydrologic responses of two years post-fire, 
and longer-term analyses that evaluate the impact of different post- 
fire management strategies may be necessary. Furthermore, we opted 
to use dNBR instead of basal area mortality or area burned to quantify 
fire severity, as it may be more directly linked to the process of ET in 
forested landscapes (Eidenshink et al., 2007). Finally, it should be noted 
that there may be some vegetation recovery between the first and second 
years of the post-fire period, which was not evaluated in this study due 
to differences in precipitation patterns. Other approaches should be 
considered to evaluate this aspect with a longer period of post-fire 
assessment. 

5. Conclusions 

In our study, we investigated the effects of wildfire on hydrologic 
responses in nine burned and four unburned catchments in Oregon using 
Budyko curve graphical technique and random forest analyses. Burn 
severity and percent catchment area burned were the most important 
factors explaining changes in streamflow and ET. Beyond burn charac-
teristics, the hydrologic response may have been influenced by catch-
ment characteristics and annual differences in weather. However, our 
analysis was also influenced by uncertainty in the spatial data products 
that were available to evaluate the hydrologic responses to wildfire at a 
regional or landscape scale. As spatial data products improve, this will 
improve our understanding of the complexity of hydrologic responses to 
wildfire. Additionally, data products reliability may be improved by pre- 
and post-fire validation to ensure the reliability of inputs for analyses. 

In recent decades, large and high severity wildfires have increased in 
many parts of the world, including the Pacific Northwest of the United 
States. The impact of wildfires on water supply, water quality, and 
aquatic ecology have often been substantial and long-lasting, posing 
challenges for hydrologic flood prediction, drinking water treatment, 
and forest and ecosystem maintenance. The uncertainty in predicting 
response creates additional challenges for post-fire management and 
policy decisions. To address these challenges, it is crucial to gain a 
deeper understanding of how various hydrologic processes change 
following a forest fire and the underlying causes of those changes to 
improve our ability to predict post-fire hydrologic responses. Our study 
provided a relatively straightforward approach that relied on publicly 
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available data, which could provide a foundation for future analysis of 
post-fire effects on hydrological processes and streamflow. 
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