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ARTICLE INFO ABSTRACT

Keywords: The 2020 Labor Day fires in the Western Cascades of Oregon, USA, burned extensive forested areas, which
Wildfire altered hydrologic processes, water quality, aquatic ecosystems, and drinking water resources. Understanding
Hydrology wildfire severity effects on hydrologic processes is crucial for improved water resource management. Our study
(Sj‘a/\\{g)l;ation assessed wildfire severity impacts on hydrology using a modified calibration method for the Soil and Water
Streamflow Assessment Tool (SWAT) model. Calibration incorporated evapotranspiration and leaf area index to represent
Evapotranspiration vegetation loss and hydrologic impacts. We also integrated a wildfire module to simulate fire effects on soil and

vegetation parameters. This improved modeling approach effectively captured post-fire hydrologic behavior,
especially increased high streamflows and reduced evapotranspiration, with greater changes linked to higher
burn severity. These findings emphasize the importance of considering fire severity in hydrologic modeling,
aiding proactive management and mitigation strategies to protect water supply and enhance ecosystem resilience

Fire severity
Water balance

in wildfire-prone regions.

1. Introduction

Larger, more severe wildfires have increased in the Pacific Northwest
(PNW) in recent decades, raising concerns about effects on hydrologic
processes, streamflow, water quality, aquatic ecosystems, and drinking
water treatment (Bladon et al., 2014; Robinne et al., 2020). Wildfires
can have significant and long-lasting impacts on many hydrological
processes (Long and Chang, 2022; Robinne et al., 2020). For example,
loss of forest canopy and ground cover can lead to decreased intercep-
tion losses and greater net precipitation (Ma et al., 2020; Williams et al.,
2019). Despite this increase in net precipitation, numerous studies have
observed reductions in evapotranspiration (ET) at stand or watershed
scales due to vegetation loss (Collar et al., 2021; Ma et al., 2020; Nie-
meyer et al., 2020; Poon and Kinoshita, 2018). In addition to the ET
reduction, the combined effects of additional water reaching the soil
surface and altered runoff pathways often lead to changes in peak flows,
and annual water yields, which can persist for many years after a
wildfire (Hallema et al., 2017; Holden et al., 2012; Stoof et al., 2012).
Furthermore, wildfires modify soil physical properties, such as surface
sealing, ash deposition, and development of water-repellent layers,

leading to altered infiltration, surface runoff, hillslope runoff, and
erosion processes (Ebel et al., 2012; Ebel and Moody, 2020; Moody et al.,
2015). These soil alterations also affect soil moisture dynamics by
altering soil physical properties (Gonzalez-Pelayo et al., 2024; Stevens
et al., 2020), potentially influencing vegetation recovery and plant
regrowth after wildfire disturbances (Yang et al., 2022).

Fire severity, which refers to the extent of vegetation impacts, and
soil alteration caused by a wildfire, is a critical determinant of post-fire
hydrological changes. For instance, Kang et al. (2024) studied the effects
of the 2020 Labor Day Fires in the Western Cascades of Oregon on runoff
and ET in several catchments and found that decreases in ET and in-
creases in runoff were strongly correlated with burn severity and burned
area. Additionally, a study in the Pacific Northwest region found that
watersheds burned at medium to high severity experienced post-fire
peak flow increases of 21-34 %, while low severity areas tended to
have minimal (~2 %) impacts on peak flows (Li et al., 2023). However,
the relationship between fire severity and hydrological responses is
complex and influenced by various factors, leading to substantial un-
certainty and variability in outcomes (Saxe et al., 2018; Spencer and
Winkler, 2024). In addition, empirical studies are often constrained
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spatially and temporally, which limits the transferability of knowledge
and our ability to make accurate predictions (Emmerton et al., 2020; Wu
et al., 2021).

Hydrologic models are often used as an effective tool for examining
wildfire impacts on hydrology under multiple post-fire scenarios and
scales because they incorporate complex hydrologic processes (Ebel
et al., 2023; Kiesel et al., 2013; Loiselle et al., 2020; Wampler et al.,
2023). Many hydrologic models have been adapted and used to evaluate
hydrologic response to wildfires, with different models suited to various
spatial and temporal scales (Ebel et al., 2023). For example, the Regional
Hydro-Ecologic Simulation System (RHESSys; Tague and Band, 2004)
model was used to assess catchment-scale effects from wildfire on
vegetation carbon cycle (Bart et al., 2020), and impacts of climate
change on wildfire regimes (Hanan et al., 2021). Similarly, the Water
Erosion Prediction Project (WEPP; Elliot, 2004) is a process-based hy-
drology and erosion model used to simulate wildfire effects on water
quantity and quality (Dobre et al., 2022). These examples illustrate how
different models operate at varying spatial scales, with each model of-
fering unique strengths in capturing specific aspects of fire-hydrology
interactions.

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998;
Neitsch et al., 2011) model is a semi-distributed, continuous, and
process-based model, which has increasingly been used in recent years
to evaluate wildfire impacts on hydrology at a river basin scales (Basso
et al., 2020; Loiselle et al., 2020; Wampler et al., 2023). Compared to
other hydrologic models used to evaluate wildfire effects on hydrology,
SWAT has been applied to relatively large-scale watersheds and has
reduced process complexity compared to other models (Ebel et al.,
2023). Originally developed for use primarily in agricultural systems,
SWAT has been modified to improve hydrological simulations in
forested ecosystems by updating plant growth, forest dynamics, and
nutrient cycling (Lai et al., 2020; Yang and Zhang, 2016; Zhang et al.,
2020). More recently, Haas et al. (2022a, 2022b) proposed a new cali-
bration method to improve simulation of forest processes by repar-
ameterization of forest vegetation, including the calibration of ET,
biomass, and leaf area index (LAI), leading to improved water balance
simulations in forested watersheds. These modifications have improved
the suitability of SWAT for modeling wildfire-induced changes in hy-
drology across large watersheds while maintaining computational
efficiency.

In recent decades, there has been a substantial increase in the
amount and type of hydrologic data available from satellite and remote
sensing products, including data on precipitation, soil moisture,
groundwater levels, snow cover, and evapotranspiration, which have
improved our ability to understand the hydrologic cycle. Among the
datasets representing ET, NASA's Moderate Resolution Imaging Spec-
trometer (MODIS) dataset has been widely used for calibration with the
SWAT model in the US (Dangol et al., 2023; Koltsida and Kallioras,
2022). Multiple studies have used MODIS ET data to calibrate SWAT and
achieve improved watershed model predictions (Parajuli et al., 2018;
Tobin and Bennett, 2017), demonstrating the value of using remote
sensing-based ET data. However, previous wildfire studies using the
SWAT model have not incorporated ET calibration specifically in
forested watersheds. While other studies have used SWAT to examine
wildfire impacts on streamflow and peak flow (Wampler et al., 2023),
and improved it for use in forested watersheds by integrating ET and LAI
calibration (Haas et al., 2022b), no study has combined both of these
calibrations in the context of wildfire-affected forested watersheds.
Therefore, SWAT has been underutilized for addressing post-fire hy-
drological dynamics and fire severity effects. Recently, the SWAT +
model (Bieger et al., 2017) has been developed as the latest generation
of the SWAT family, providing enhanced spatial flexibility and improved
representation of land management operations, including the capability
to incorporate fire operations within the management module. Our
study used the SWAT 2012 version, which remains widely applied and
validated for wildfire-related hydrologic simulations (Wampler et al.,

Environmental Modelling and Software 198 (2026) 106896

2023), while the calibration framework and wildfire parameterization
presented here are consistent with the structural concepts introduced in
SWAT+.

In our study, we built on these recently developed methods for
improved calibration of SWAT simulation of forest and wildfire dy-
namics. We implemented additional wildfire calibration steps to further
improve the wildfire module, and we evaluated the modified SWAT
simulations of wildfire-driven hydrologic change. By addressing this
gap, we aimed to advance the use of SWAT for wildfire impact analysis
in forested watersheds. Specifically, we evaluated impacts of large, high
severity wildfires on hydrological fluxes in two basins in the Western
Cascades of Oregon, USA that burned during the 2020 Labor Day Fires.
During these events, five large wildfires (Archie Creek, Beachie Creek,
Holiday Farm, Lionshead, and Riverside) burned more than 343,900 ha
and destroyed more than 4000 homes (Oregon Department of Forestry,
2022). Unusually dry conditions and strong east winds helped fuel the
fires and caused them to spread quickly and burn severely (Abatzoglou
etal., 2021). These events highlighted critical knowledge gaps regarding
how wildfire severity influences post-fire changes in ET, runoff, and
streamflow, and overall water balance. The specific objectives of our
study were to:

a. Develop and apply a modified calibration technique and wildfire
module to the SWAT model to simulate hydrological fluxes in
forested watersheds affected by wildfire;

b. Use empirical hydrological data to evaluate the pre- and post-fire
performance of simulations from the default and modified SWAT
calibration techniques;

c. Assess post-fire hydrological responses, including changes in ET,
runoff, streamflow, and annual water balance; and

d. Evaluate the role of fire severity in mediating post-fire hydrological
responses.

2. Methods
2.1. Study area

For our study, we selected two large sub-basins in the Cascade Range
in Oregon, USA, which are tributaries of the Willamette River Basin
(Fig. 1). The McKenzie River sub-basin provides drinking water to about
200,000 people in the Eugene area in Oregon (Kraus et al., 2010), and
the North Santiam River sub-basin supplies water to approximately 200,
000 residents in the Salem area in Oregon. The watersheds are located
within a Mediterranean climate with dry, warm summers and cool, wet
winters (Snyder et al., 2002). Average annual precipitation of the two
watersheds is 2204 mm, but varies from 1124 mm to 3164 mm due to
orographic effects (PRISM Climate Group, 2022). Elevation across the
sub-basins ranges from 139 m to 3194 m (Fig. 1b). In the lower elevation
areas (<300 m), annual 30-year normal temperatures range from mean
daily minimums of 0.2-1.4 °C in the winter to mean daily maximums of
24.8-28.3 °C in the summer. In the high elevation areas (>1700 m)
temperatures range from mean daily minimums of —8.0 to —1.4 °C in
the winter to mean daily maximums of 19.4-26.0 °C in the summer
(PRISM Climate Group, 2022). Both watersheds are primarily domi-
nated by evergreen forests (~80 %) of Douglas-fir (Pseudotsuga menzie-
sii), Pacific silver fir (Abies amabilis), and Western hemlock (Tsuga
heterophylla) (Table 1). The dominant soil textures include Silty Clay
Loam, Clay Loam, and Cobbly Loam (NRCS, 2025). Geologically, the
watersheds are situated on volcanic formations of the Cascade Range,
composed mainly of basaltic and andesitic lava flows, pyroclastic de-
posits, and glacial sediments (Tague and Grant, 2004). These charac-
teristics influence groundwater-surface water interactions, with
extensive spring-fed systems in the High Cascade terrain sustaining
streamflow during the dry season (Jefferson et al., 2006).

In September 2020, three wildfires occurred through the McKenzie
and North Santiam watersheds, burning a total area of 146,580 ha inside
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Fig. 1. (a) Map showing the location of our study watershed (black circle) in the western United States. Blue and red lines highlight the McKenzie and North Santiam
watersheds, respectively. (b) Map of the study watersheds and three wildfires burned in 2020 (from north to south: Beachie Creek, Lionshead, and Holiday Farm). In
the burned areas, aqua, light yellow, orange, and red areas indicate the unburned, low, moderate, and high burned severities. (c) Sub-watersheds and calibration
locations. Black lines represent the boundaries of the sub-watersheds, black circles indicate the USGS gauging stations for streamflow calibrations, and the green and
blue circles represent the locations of ET and LAI calibrations (USGS: United States Geological Survey, ET: Evapotranspiration, LAI: Leaf area index). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1
General characteristics of the McKenzie and

North Santiam watersheds.

McKenzie

North Santiam

Watershed Area (ha)

Land uses (Natural Resources
Conservation Service,
2025; Dewitz and USGS,
2021)

Soils Textures (NRCS, 2025)

175,141

Mean: 1045
Min: 139
Max: 3149

Elevation (m)

Evergreen Forest (84 %),
Shrub (7 %), Barren Land
(3 %),Pasture/Hay (1 %)

Silty Clay Loam, Clay
Loam and Cobbly Loam

295,777

Evergreen Forest (84
%), Shrub (8 %),
Pasture/Hay (2 %)

Silty Clay Loam, Clay
Loam and Cobbly
Loam

Mean: 983

Min: 146

Max: 3193

the watersheds perimeters (Fig. 1b). In the McKenzie River sub-basin,
the Holiday Farm Fire affected approximately 18 % of the sub-basin
area (56,394 ha). Within the watershed, the wildfire burned at rela-
tively high severity with 13.2 % unburned, 14.5 % low, 35.3 % mod-
erate, and 37.1 % high severity (Table 2). The Beachie Creek and
Lionshead Fires burned about 77 % of the North Santiam watershed
(90,186 ha). The Beachie Creek Fire burned 44.2 % of the sub-basin area
(51,738 ha) with 16.4 % unburned, 18.4 % low, 30.3 % moderate, and
34.9 % high severity. The Lionshead Fire burned 38.8 % of the sub-basin
area (38,448 ha) with 19.9 % unburned, 19.6 % low, 28.6 % moderate,
and 31.9 % high severity. Given the differences in both the area and
magnitude of these wildfires across the two sub-basins, we expected the
magnitude and range of hydrologic responses to differ between the study
catchments, providing a useful comparison.
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Table 2
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Information of the three wildfires that burned in the North Santiam and McKenzie Basins in 2020. Burn severity classes were categorized based on the difference
Normalized Burn Ratio (ANBR) values proposed by Key and Benson (2006). The dNBR data is from the monitoring trends in burn severity (MTBS, 2024) website

(https://mtbs.gov/).

Wildfires Watersheds Total area burned Burned area in Burn severity within basin (%)
(ha) watershed (ha) Unburned Low (dNBR > 100 and Moderate (ANBR > 270 and High (dNBR >
(dNBR< < 270) < 660) 660)
100)
Holiday McKenzie 70,169 56,394 13.2 14.5 35.3 37.1
Farm
Beachie North 78,333 51,738 16.4 18.4 30.3 34.9
Creek Santiam
Lionshead North 82,794 38,448 19.9 19.6 28.6 31.9
Santiam

2.2. SWAT model background and calibration

SWAT is a semi-distributed, continuous, and process-based hydro-
logic model developed to simulate the long-term effects of climate and
land use management on hydrology, sediment transport, and water
quality in watersheds (Arnold et al., 1998; Neitsch et al., 2011). In our
study, we used the SWAT 2012 model (rev. 664) with the ArcSWAT
2012.10.5 interface. Watersheds were delineated into sub-watersheds
using digital elevation models. Each sub-watershed was further
divided into hydrologic response units (HRUs), which represent unique
combinations of land use, soil type, and slope class within each subbasin.
The use of HRUs enabled us to account for spatial heterogeneity in land
cover, soil, and topography within the model.

We used a 30 m digital elevation model (DEM) from the National
Hydrography Dataset (NHD) (U.S. Geological Survey, 2022) for water-
shed configuration and topographic parameter estimation. Land use and
soil inputs were based on 2019 National Land Cover Database (NLCD)
data (Dewitz and USGS, 2021) and STATSGO2 soils data (NRCS, 2025).
The Blue River and Cougar Reservoirs in the McKenzie River sub-basin,
along with the Detroit Reservoir in the North Santiam sub-basin, were
included in the model simulation by configuring reservoir surface areas
and volumes for both emergency and principal spillways. Additionally,
monthly reservoir outflow data were incorporated to account for flow
alterations caused by the reservoirs (U.S. Army Corps of Engineers,
2025). For meteorological inputs, we used Daymet precipitation and
temperature data at a 1-km resolution (Thornton et al., 2022). The
watershed delineation resulted in 313 sub-watersheds for the McKenzie
and 203 for the North Santiam sub-basin (Fig. 1c), with the watershed
outlets set at the approximate drinking water intake locations for Eugene
(McKenzie) and Salem (North Santiam). Sub-watersheds were then
divided into HRUs, resulting in 2048 HRUs for the McKenzie and 1248
HRUs for the North Santiam to represent the pre-fire conditions. To
reduce computational load, we applied 10 % threshold values for land
use, soil, and slope, dissolving HRUs that fell below these thresholds into
existing land use, soil, and slope categories (Her et al., 2015).

Calibration and validation are essential to ensuring the reliability of
hydrological processes under varying conditions. Daily streamflow was
calibrated using the SWAT calibration and uncertainty assessment tool
SWAT-CUP (Abbaspour, 2014) with the SUFI-2 method. The model was
run on a daily time step, with a 3-year warm-up period. Calibration was
performed for discharge from January 2011 to August 2020 (pre-wild-
fire period), using streamflow data from US Geological Survey (USGS)
gauge stations (McKenzie: USGS 14164900, North Santiam: USGS
14183000). Validation was conducted over a separate period from 2001
to 2010 at the same stations. This design ensured that model parameters
were calibrated to reflect hydrologic conditions immediately before the
wildfire, allowing for continuity with the post-fire simulation and
improved the ability of the model to detect wildfire-driven changes.

To improve SWAT model simulations in forested environments and
to account for wildfire effects, we compared two calibration processes:
(1) the default simulation (hereafter referred to as the “default” model),

which is parameterized for non-forest ecosystems and is calibrated using
only streamflow data, and (2) a modified simulation (hereafter referred
to as the “modified” model), which included calibration of streamflow,
ET, and LAI, designed to more accurately reflect interactions between
forest processes and hydrological computations within SWAT. Haas
et al. (2022a, b) proposed this approach to improve representation of
forest hydrology of the SWAT model by incorporating additional vege-
tation dynamics, particularly LAI and ET, into the calibration process.
For example, LAI is used to calculate plant biomass and evapotranspi-
ration partitioning (e.g., canopy evaporation and transpiration), which
differs greatly between forested and non-forest environments and is
critical in capturing disturbance effects like those caused by wildfire. For
ET and LAI calibrations, we used 500 m resolution MOD15A2H (Myneni
etal., 2015) and MOD16A2 (Running et al., 2017) datasets to derive LAI
and ET time series data at 8-day intervals for two sub-basins primarily
composed of evergreen forest (>80 %) (Hass et al., 2022a, b).
Calibration was carried out using the Nash-Sutcliffe Efficiency (NSE;
Nash and Sutcliffe, 1970) as the primary objective function, as it effec-
tively measures the correspondence between observed and simulated
daily streamflow (Moriasi et al., 2015). The initial parameter ranges
were established using the default limits provided in the SWAT-CUP
interface. The number of calibration iterations differed by basin and
calibration types because the parameter ranges were progressively
narrowed until all calibration variables reached satisfactory ranges. For
the McKenzie River sub-basin, the default simulation required three it-
erations, whereas the modified calibration required 38 iterations. For
the North Santiam sub-basin, the default simulation required two iter-
ations, and the modified calibration required 15 iterations. Each itera-
tion consisted of 1000 simulations, with parameter ranges adjusted
based on the best-performing parameter sets and constrained by plau-
sible values documented in previous SWAT studies (Abbaspour, 2014;
Abbaspour et al., 2015; Haas et al., 2022a, 2022b; Narsimlu et al., 2015;
White et al., 2018; Lee et al., 2024; Devkota et al., 2024). Model vali-
dation followed a split-sample approach, applying the single best
parameter set from the calibration to the independent validation period.
This approach ensured that the model was evaluated under different
hydrologic conditions without recalibration. For streamflow, model
performance during calibration was first evaluated against the “Good”
performance (NSE >0.70) for daily simulations (Moriasi et al., 2015),
confirming that the model achieved acceptable predictive accuracy.
Parameters used in the default and modified models are listed in
Table 3, and additional vegetation-related parameters applied in the
modified model are presented in Table 4. To account for spatial het-
erogeneity, separate parameter sets were calibrated for the upstream
and downstream sub-basins, while basin-level and plant parameters
were applied uniformly across the watershed. For the McKenzie water-
shed, the upstream and downstream areas were divided at the conflu-
ence of the Blue River and the South Fork McKenzie River, whereas in
the North Santiam watershed, the division was defined by the location of
Detroit Dam, which integrates inflows from multiple upstream tribu-
taries. This approach was supported by the SWAT-CUP framework,
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Table 4
Summary of SWAT calibrated parameters for the modified model (user-defined
forest parameters which impact watershed hydrological processes) (Haas et al.,

2022a; 2022b).

Parameter Description Range
Min Max

v_GSI in plant.dat Max stomatal conductance (m*s 1) 0.001 0.1

v_CHTMX in plant. Max canopy height (m) 0.1 20
dat

v_RDMX in plant. Max root depth (m) 0 3
dat

v_VPDFR in plant. Vapor pressure deficit corresponding to 0.7 3.7
dat the fraction maximum stomatal

conductance (kPa)

v_BIO_E in plant. Biomass/Energy Ratio ((kg/ha)/(MJ/ 0.1 50
dat m?))

v_BLAI in plant. Max leaf area index 0.5 5
dat

v_T_OPT in plant. Optimal temperature (temp) for plant 10 30
dat growth (°C)

v_T_BASE in plant. Min temp plant growth (°C) 0 4
dat

v_BIO_LEAF in Fraction of tree biomass converted to 0 1
plant.dat residue during dormancy

v_EXT_COEF in Light extinction coefficient 0.1 2
plant.dat

v_BMX_TREES in Maximum biomass for a forest (metric 100 1000
plant.dat tons/ha)

v_ALAI_MIN in Minimum leaf area index for plant 0 1
plant.dat during dormant period (m?/m?)

v_DLAI in plant. Fraction of growing season when leaf 0.15 1

Table 3
Summary of SWAT calibrated parameters for both default and modified models.
Parameter Description Range
Min Max
r_ CN2.mgt SCS runoff curve number -0.3 0.3
v_ALPHA BF. Baseflow alpha factor (days) 0.2 0.6
gw
v_GW_DELAY. Groundwater delay (days) 100 400
gw
v_GWQMN.gw Threshold depth of water in the shallow 0 1000
aquifer required for return flow to occur
(mm)
v_ESCO.hru Soil evaporation compensation factor 0.01 1
v_EPCO.hru Plant uptake compensation factor 0.01 1
v_SOL_AWC. Available water capacity of the soil layer 0 1
sol (mm H,O/mm soil)
r_SOL _K.sol Saturated hydraulic conductivity (mm/ -0.3 0.3
hr)
r_SOL_BD.sol Moist bulk density (g/cm®) -0.5 0.3
v_GW_REVAP. Groundwater “revap” coefficient 0.02 0.2
gw
v_SURLAG.hru Surface runoff lag time (days) 1 24
v_OV_N.hru Manning's "n" value for overland flow 0.01 1
v_TIMP.bsn Snow pack temperature lag factor 0 1
v_SFTMP.bsn Snowfall temperature (°C) -10 10
v_SMTMP.bsn Snow melt base temperature (°C) -10 10
v_SMFMX.bsn Maximum melt rate for snow during year 0 5
(mm H,0/°C-day)
v_SMFMN.bsn Minimum melt rate for snow during the 0 5
year (mm H,0/°C-day)
v_CANMX.hru Maximum canopy storage (mm H;0) 0 100
r_SLSUBBSN. Average slope length (m) -0.2 0.2
hru
r_HRU_SLP.hru Average slope steepness (m/m) -0.3 0.3
v_CH_K2.rte Effective hydraulic conductivity in main 0.01 500
channel alluvium
v_CH_N2.rte Manning's “n" value for the main channel 0.001 1
r_SOL _Z.sol Depth from soil surface to bottom of layer -0.5 0.5
v_LALINIT.mgt Initial leaf area index (m?/m?) 0 3
v_PHU_PLT. Total number of heat unit 1000 3000
mgt

Note: v_, denotes the default parameter is replaced by a given value; r_, means
the existing parameter value is multiplied by (1 + a given value).

which allows spatially differentiated parameterization. In the modified
(multi-variable) calibration, we assigned weights of 0.3 to streamflow,
0.2 to LAL and 0.25 to ET in each of the two sub-watersheds, resulting in
a total weight of 1. This weighting scheme balanced hydrologic and
vegetation components and ensured that no single variable dispropor-
tionately influenced the calibration outcome.

Given that evergreen forest covers more than 80 percent of both
study basins, vegetation dynamics such as ET and LAI were expected to
be relatively homogeneous across the study area. Therefore, calibration
with MODIS-based observations in representative areas was considered
to capture the dominant basin-wide vegetation signals. This approach
was supported by Haas et al. (2022a, b), who reported that
sub-watershed calibration using representative forested areas can
effectively capture vegetation process in forested watersheds. In both
the McKenzie and North Santiam watersheds, we selected two forested
sub-watersheds for ET and one HRU for LAI calibration. For ET cali-
bration, the selected sub-watersheds were 304 (1404 ha) and 125 (1349
ha) in the McKenzie basin, and 37 (816 ha) and 121 (1840 ha) in the
North Santiam basin, representing upstream and downstream locations
(Fig. 1c). For LAI calibration, we selected one evergreen forest HRU in
each basin, and they are HRU 2037 in McKenzie (323 ha) and HRU 221
in North Santiam (231 ha). This targeted calibration strategy also helped
reduce model complexity and minimize parameter equifinality
compared to full-watershed calibration that selected multiple
sub-watersheds to cover the entire watershed, which involves a larger
number of parameters that can complicate model optimization
(Abbaspour et al., 2015; Yang et al., 2008).

dat area starts declining

Note: v_, denotes the default parameter is replaced by a given value.

After calibration, model evaluation of the two simulations was con-
ducted using both statistical and graphical approaches. Streamflow
performance was evaluated at point locations (USGS gauge stations)
using NSE, coefficient of determination (Rz), root mean square error
(RMSE), and percent bias (PBIAS). ET and LAI simulations were
compared with MODIS observations (Myneni et al., 2015; Running et al.,
2017) at the catchment level using the same set of statistical metrics and
graphical approaches. Water-balance partitioning was also compared
between the default and modified models using long-term averages of
ET, baseflow, lateral flow, and surface runoff, summarized as percentage
contributions to total precipitation.

2.3. Wildfire module and evaluation

In addition to the modified calibration technique described above,
we incorporated the SWAT wildfire module developed by Wampler et al.
(2023), which modified multiple soil and vegetation parameters based
on burn severities in the SWAT model to represent the effects of wild-
fires. In SWAT simulations, we set the fire date to September 7, 2020,
which marked the beginning of the Holiday Farm fire and the rapid
expansion of the other two wildfires. To assign fire severities to each
HRU, we employed the “Zonal Statistics as Table” tool in ArcMap to
compute the mean dNBR (differenced normalized burn ratio; Key and
Benson, 2006) values for each HRU. The burn severity and burned pe-
rimeters data were provided by the Monitoring Trends in Burn Severity
(“MTBS,” 2024), and the averaged burn severity was used to classify
low, moderate, and high burn severity categories. We selected dNBR
values at <100 for unburned, <270 for low burn severity, <660 for
moderate burn severity, and > 660 for high burn severity (Key and
Benson, 2006), and dNBR-based classification is widely applied to assess
fire-induced changes in vegetation and soil properties, as it captures the
degree of organic matter consumption and canopy alteration (Keeley,
2009).

The wildfire module accounts for the impacts of wildfires by
adjusting several critical model parameters. These adjustments included
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modifications to available water capacity, bulk density, soil and plant
evaporative compensation factors, curve number, Manning's n for
overland flow, and land use. The parameter modifications were initiated
from the date of the wildfire event, reflecting the immediate and long-
term effects of the fire on the landscape. Using the model with
adjusted parameters, we ran the model for three years following the
fires, as data were available only for this period, and compared the re-
sults with baseline simulations (SWAT-normal). To assess the accuracy
of the wildfire simulations (SWAT-fire), we compared simulated
streamflow and ET of the normal and wildfire simulations with observed
streamflow data and remotely sensed ET for pre- and post-fire periods.
We ran both the SWAT-normal and SWAT-fire simulations using the
modified calibration that incorporated streamflow, ET, and LAL
Wildfire-related parameter modifications were applied only to the
SWAT-fire simulation to represent the effects of wildfire. Detailed de-
scriptions of these parameter changes are available from Wampler et al.
(2023) and summarized in Table 5.

After applying the wildfire module, streamflow performance was
evaluated under both overall and high-flow conditions (>90th percen-
tile of daily discharge) to assess model behavior after wildfires. ET and
runoff responses to wildfire severity were further analyzed at the sub-
watershed scale. Box-and-whisker plots were used to summarize
spatial variability across burn-severity classes (unburned, low, moder-
ate, and high), while scatter plots with dNBR were used to quantify the
relationships between burn severity and percent changes in ET and
runoff. Water-balance partitioning was also evaluated by comparing the
relative contributions of ET, surface runoff, lateral flow, and baseflow
between the SWAT-normal and SWAT-fire simulations to assess wildfire-
induced changes in hydrologic processes.

3. Results
3.1. Base model calibration for forested systems

The default and modified calibration procedures produced similar
streamflow simulations in both watersheds (Table 6). Also, the final
calibrated parameter values for the default and modified models are
provided in the Supplementary material (Table S1-S3). In the McKenzie
watershed, the modified model slightly outperformed the default during
the calibration period (NSE = 0.88 vs. 0.87; R? = 0.90 vs. 0.88), while
validation results were similar. In the North Santiam watershed, both
models showed modest differences, with NSE ranging from 0.67 to 0.74
and R? from 0.70 to 0.78 across periods. Full performance metrics are
provided in Table 6. To complement these statistical results, the
observed and simulated hydrographs for both watersheds are presented
in the Supplementary Materials (Fig. S1-S2). These figures present that
both the default and modified simulations reproduced the seasonal
variability of streamflow well, and the NSE values for both watersheds
indicate Good (NSE >0.70) to Very Good (NSE >0.85) model perfor-
mance (Moriasi et al., 2015).

The SWAT model captured general seasonal variation in ET (NSE >0)
across all sites using both the default and modified models (Fig. 2).
However, the default model tended to underestimate ET in summer and

Table 5
Summary of parameters modified in the wildfire module (Wampler et al., 2023).

Parameter Replacement type Change based on fire severity

Low Moderate High
SOL_AWC relative —25% —70 % —90 %
SOL BD relative 1% 9% 13 %
ESCO replace 0.5 0.8 1
EPCO replace 0.5 0.2 0.01
CN2 additive 10 20 30
OV.N replace 0.8 0.4 0.011
Land Use replace FRSE RNGE BARR
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overestimate it in winter, while the modified calibration reduced these
biases. For instance, in sub-watershed 125 (McKenzie) NSE improved
from 0.18 (default) to 0.48 (modified), while in 121 (North Santiam) the
NSE improved from 0.38 (default) to 0.60 (modified). These improve-
ments were also reflected in improved R? and PBIAS values (Table 6),
indicating better seasonal agreement with MODIS ET.

The modified LAI parameterization substantially improved LAI
simulations compared to the default model, which was not calibrated for
forested systems (Fig. 3). In both HRU 2037 (McKenzie) and HRU 221
(North Santiam), the default model failed to capture seasonal dynamics
(NSE <0), while the modified model reproduced typical seasonal pat-
terns, including the spring increase and late-summer decline in
streamflow, with NSE improving to 0.66 and 0.45, respectively in the
two sub-basins. These results demonstrated that forest-specific param-
eterization enhanced the model's ability to simulate vegetation dy-
namics in fire-prone watersheds (Table 6). In addition, we compared
SWAT-simulated monthly ET and LAI values against MODIS observa-
tions for the entire McKenzie and North Santiam watersheds using the
calibrated parameters to evaluate whether sub-watershed-based cali-
bration effectively captured basin-wide vegetation dynamics. As shown
in Figs. S3 and S4 in the Supplementary Material, SWAT successfully
reproduced seasonal patterns and magnitudes of ET, with NSE values of
0.78 for McKenzie and 0.86 for North Santiam during the calibration
period (2011-August 2020) (Fig. S3). Similarly, SWAT captured sea-
sonal LAI dynamics, with NSE values of 0.31 for McKenzie and 0.52 for
North Santiam (Fig. S4). These results are consistent with those obtained
in the representative sub-watersheds used for calibration (Figs. 2 and 3),
indicating that the selected areas adequately represented vegetation
behavior across the basins.

3.2. Comparison of water balance partitioning

In addition to the improvements in ET and LAI estimations, the
modified parameterization led to clear differences in water balance
partitioning. Both models indicated that ET and lateral flow was the
dominant component of the water budget for both the McKenzie and
North Santiam River sub-basins during the calibration and validation
period from 2001 to September 2020. For the McKenzie River sub-basin,
ET and lateral flow accounted for 35.6 % and 29.4 % of the water budget
in the default model, while baseflow accounted for 26.7 %, and surface
runoff accounted for 8.4 % (Fig. 4a). Under the modified model, ET and
lateral flow increased to 37.8 % and 35.8 % while baseflow decreased
slightly to 23.1 % and surface runoff decreased more substantially to 3.3
%. Considering only total runoff, the contributions of surface runoff
were 17.5 % from the default model and 10.1 % from the modified
model.

Similar patterns were observed in the North Santiam River sub-basin.
In the modified model, baseflow increased from 12.7 % to 21.2 %, while
surface runoff decreased from 12.0 % to 7.1 % (Fig. 4b). Lateral flow
remained the largest runoff component, accounting for about 42-43 %
in both models, indicating that subsurface flow dominates hydrologic
responses in this basin. ET also decreased slightly from 31.5 % to 29.6 %,
but the seasonal pattern of ET was improved under the modified model
(Fig. 2b), likely reflecting the influence of revised water-balance parti-
tioning. These results from both sub-basins highlight the shift toward
stronger subsurface contributions and reduced surface runoff under the
modified calibration, consistent with the hydrologic characteristics of
the western Cascade watersheds (McGuire and McDonnell, 2010).

3.3. Wildfire simulation

3.3.1. Comparison of simulated runoff and ET before and after wildfire for
SWAT-normal and SWAT-fire simulations

Simulation results from SWAT-fire showed slight increases in
streamflow (3.1 % in the McKenzie and 4.8 % in the North Santiam)
compared to SWAT-normal, especially during the wet seasons (October
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Table 6

Results of calibration and validation for the default and modified model.
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Watersheds Calibration/ Evaluation Default model Modified model
lidati iteri
Validation critena Streamflow ET ET LAIL Streamflow ET subbasin ET subbasin LAIL
subbasin subbasin HRU 125 304 HRU
125 304 2037 2037
McKenzie Calibration NSE 0.87 0.18 0.44 —0.85 0.89 0.49 0.47 0.66
(2011-Aug 2020) R? 0.88 0.34 0.69 0.02 0.90 0.56 0.79 0.73
RMSE 34.51 1.30 0.72 1.07 33.65 1.02 0.70 0.46
PBIAS (%) 5.00 21.41 —20.30 —19.84 4.16 13.01 —20.77 4.42
Validation NSE 0.78 0.13 0.22 —-0.57 0.73 0.45 0.23 0.61
(2001-2010) R? 0.82 0.28 0.66 0.00 0.82 0.50 0.75 0.69
RMSE 41.62 1.28 0.76 1.09 46.88 1.01 0.76 0.54
PBIAS 10.74 14.21 —26.23 12.94 9.73 7.59 —26.84 1.34
North Calibration NSE 0.74 0.41 0.38 —-0.74 0.71 0.45 0.60 0.45
Santiam (2011-Aug 2020) R? 0.78 0.57 0.47 0.21 0.76 0.53 0.62 0.69
RMSE 38.89 0.95 1.02 1.69 40.86 0.92 0.82 0.95
PBIAS 13.07 —8.07 6.49 43.09 11.14 2.70 5.94 13.21
Validation NSE 0.67 0.10 0.41 —0.47 0.69 0.41 0.61 0.66
(2001-2010) R? 0.70 0.51 0.49 0.09 0.72 0.51 0.62 0.71
RMSE 43.37 1.07 0.96 1.87 41.89 0.87 0.78 0.90
PBIAS 15.32 —-15.73 0.06 38.17 11.77 —2.83 5.65 11.29
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Simulated
Default model Modified model
150 - 150
—~~
£100 =100
S
= €
N N
|- -
L 50 F W 50 -
0 : 0 .
cOoOss>csS Qs >0 cossSsS>csoan >0
mm‘“ﬁm:ggmoom ma)‘“o-ms_:’,:ogom
SLES<sS5Pzn0=zA SL=<sS520n0=zAAa
(a) McKenzie (sub-watershed 125)
Default model Modified model
150 - 150
—~~ —~~
£100 t £100
E E
— —
w 50 r w 50
0 0
coss>csoal >0 cass>xcsoay >0
T082T53508520 T8 28533085280
SL=I<sS5’2n0=2zAn SL=I<sS5’P2n0=zAA

(b) North Santiam watershed (sub-watershed 121)

Fig. 2. Comparisons of monthly average ET from the default and improved calibration technique. The monthly average was determined by averaging the daily data,
not the sum of daily data. Black lines indicate the remote sensing observations (MODIS: Moderate Resolution Imaging Spectrometer), and gray and dashed lines
represent the ET estimates from SWAT. (a) Results of the McKenzie watershed (sub-watershed 125). (b) Results of the North Santiam watershed (sub-watershed 121).

to March) (Fig. 5). Overall performance of streamflow simulations were

similar between SWAT-fire and SWAT-normal during the post-fire
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Fig. 3. Comparisons of monthly average LAI from the default and improved calibration technique. Black lines indicate the remote sensing observations (MODIS), and
gray and dashed lines represent the LAI estimates from SWAT. (a) Results of the McKenzie watershed (HRU, 2037). (b) Results of the North Santiam watershed

(HRU 221).

period. In the McKenzie and North Santiam watersheds, both simula-
tions achieved identical NSE values (0.88 in McKenzie and 0.66 in North
Santiam), although the PBIAS was slightly more accurate for the SWAT-
fire simulation compared to the normal simulation (Fig. 5). However,
the SWAT-fire simulation demonstrated superior performance in simu-
lating high flow conditions (>90th percentile) in both watersheds. In the
McKenzie watershed, the NSE for high flow was 0.85 for the SWAT-fire
simulation, compared to 0.53 for the SWAT-normal simulation (Fig. 5b).
Likewise, in the North Santiam watershed, the SWAT-fire simulation
generated better simulation (NSE = 0.03), outperforming the SWAT-
normal simulation (NSE = —0.65) (Fig. 5d).

Increased streamflow was primarily driven by enhanced surface
runoff in burned sub-watersheds. In the McKenzie sub-basin, runoff in-
creases were consistently higher in areas with greater burn severity and
were most pronounced in 2022, the wettest post-fire year (1965 mm of
precipitation), compared to 2021 (1710 mm) and 2023 (1636 mm)
(Fig. 6a—c). Linear regression analysis confirmed a strong positive rela-
tionship between runoff change and burn severity, with R? values
ranging from 0.68 to 0.81 (Fig. 6d-f). A similar pattern was observed in
the North Santiam watershed, where runoff increases also scaled with
burn severity and peaked in 2022. The strength of correlation between
runoff changes and dNBR ranged from 0.53 to 0.79, reinforcing the
consistent influence of burn severity across years and watersheds
(Fig. 7a-f).

The severe wildfires in 2020 led to substantial reductions in ET

during the post-fire period (October 2020 to September 2023). Relative
to the SWAT-normal simulation, there was an overall decrease in ET in
the SWAT-fire simulation, with the magnitude of changes increasing
with burn severity. In the McKenzie watershed, remote sensing data
indicated ET decreases of —31.6 % in 2021, -22.9 % in 2022, and -33.2 %
in 2023 in burned areas, relative to the pre-fire period (annual average
from October 2011 to September 2020) (Fig. 8a). The SWAT-fire model
simulated similar ET reductions, with —28.6 % in 2021, -28.3 % in 2022,
and -36.7 % in 2023. In contrast, the SWAT-normal simulations showed
minimal changes or remained stable compared to the pre-fire period.
Likewise, in the North Santiam watershed, remote sensing data showed
ET reductions of —29.8 % in 2021, -26.1 % in 2022, and -56.0 % in 2023
(Fig. 8b). SWAT-fire simulated reductions of —15.7 % in 2021, -11.6 %
in 2022, and -23.2 % in 2023, outperforming the SWAT-normal simu-
lation. These findings suggest that the SWAT-fire simulation more
accurately represents post-fire ET dynamics and better reflects post-fire
hydrologic conditions compared to the SWAT-normal simulation.

Burn severity was negatively associated with simulated ET from the
SWAT-fire model in both the McKenzie and North Santiam watersheds
(Figs. 9 and 10). In the McKenzie watershed, ET declined more in areas
with higher burn severity, with annual reductions ranging from
approximately 16 %-39 % across the three post-fire years. The North
Santiam watershed showed a similar pattern, with reductions ranging
from about 13 % to 32 %. These consistent trends across years and
watersheds highlight the strong influence of burn severity on post-fire
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Fig. 4. Average annual water balance under default and improved model parameterization. (a) McKenzie watershed. (b) North Santiam watershed.

ET dynamics.

3.3.2. Water balance partitioning

In the McKenzie River sub-basin, where the burned areas are pri-
marily located in the downstream regions, the water balance in the
burned sub-watersheds from the normal simulation is quite different
from that of the entire watershed, specifically for the baseflow contri-
bution (Fig. 4a). The SWAT-normal simulation estimated ET accounted
for 38.5 %, lateral flow 48.3 %, baseflow 7.5 %, and surface runoff only
5.7 %. The SWAT-fire simulation showed substantial changes: ET
sharply decreased to 28.6 %, surface runoff surged to 19.3 %. Lateral
flow remained the dominant runoff component (43.6 %), and baseflow
showed a slight increase to 8.5 %. These results indicate that wildfire-
induced reductions in canopy cover and soil infiltration capacity
enhanced surface runoff and reduced ET (Fig. 11a).

In the North Santiam River sub-basin, where burned areas are
distributed throughout the entire watershed, the SWAT-normal simu-
lation indicated that ET comprised 38.5 %, lateral flow 45.5 %, baseflow
19.2 %, and surface runoff 7.2 % of the total water balance, which is
similar to the water balance composition of the entire watershed
(Fig. 4b). However, significant shifts were observed in the SWAT-fire
simulation, with ET decreasing to 23.2 %, lateral flow declining 32.1
%, baseflow dropping to 17.3 %, and surface runoff surging to 27.4 %.
These results also suggest that wildfires substantially increase surface
runoff and decrease ET, altering the primary water balance components
(Fig. 11Db). The significant increase in surface runoff and a corresponding
decrease in ET observed in the SWAT-fire simulations highlight the
impacts of fire on water balance partitioning.

4. Discussion

In our study of two burned sub-basins in Oregon, USA, we demon-
strated how calibration of the SWAT model for forest and wildfire dy-
namics improved simulation of seasonal and post-fire hydrological and
vegetation fluxes. Our approach resulted in improved simulations of
wildfire-induced hydrologic fluxes of seasonal runoff, peak streamflow,
water balance, ET, and LAI, which were poorly represented by SWAT
simulations that used conventional calibration methods. Moreover, we
demonstrate that fire severity-mediated hydrological dynamics can be
effectively captured by holistic calibration of SWAT. Our results showed
that wildfires redistribute water resources, with reduced vegetation
cover contributing to decreased ET and greater runoff. These hydro-
logical alterations could have long-term implications for water avail-
ability, flood risk, and ecosystem recovery in post-fire landscapes.

The modified calibration improved hydrological simulations in the
forested watersheds, as indicated by enhanced streamflow, ET, and LAIL
predictions. For instance, the modified model notably corrected seasonal
variations ET, closely aligning with remote-sensing observations. In
addition, the modified parameterization improved the representation of
water balance partitioning by reducing surface runoff and strengthening
subsurface contributions, which dominate flow generation in the
Cascade catchments. Specifically, in the McKenzie watershed, surface
runoff decreased from 8.4 % to 3.3 %, while combined subsurface flow
(lateral + baseflow) increased from 56.1 % to 58.9 %. Similarly, in the
North Santiam watershed, surface runoff decreased from 12.0 % to 7.1
%, and subsurface flow increased from 56.5 % to 63.3 % (Fig. 4). This
improvement in water balance partitioning has significant implications
for water resource management, particularly in regions where subsur-
face contributions influence streamflow. These shifts also underscore the
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Fig. 5. Comparison of streamflow from USGS observations, SWAT-fire, and SWAT-normal simulations. Blue lines represent USGS observations, purple lines indicate
SWAT-fire simulations, and green dashed lines show SWAT-normal simulations. (a) Daily streamflow comparison in the McKenzie watershed at USGS station
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Fig. 7. (a—c) Box and whisker plots showing simulated runoff change (%) of the burned sub-watersheds from SWAT-fire across different burn severities for each post-
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and maximum values. The ‘x' symbol indicates the mean. (d—f) Scatter plots illustrating the relationship between runoff change and dNBR for each post-fire year.

160 —MODIS —SWAT-fire - SWAT-normal
140

120
£ 100
£ 80
= 60

40

140

120 / '
—100 j : ‘ \
€ 8o / “ ‘ ' [
60 1 | j | /‘
40 / “ \ \
204 V VWV W ,

. ;

E
-
L

Q'\ N N N 0’\ Q'\ N N N N

Q Q Q Q Q Q Q
R N
S S S S S S S S

(b) North Santiam watershed (Burned sub-watersheds)

Fig. 8. Comparison of monthly total ET in the burned sub-watersheds based on MODIS observations, SWAT-fire simulations, and SWAT-normal simulations. Blue
lines represent MODIS observations, purple lines indicate SWAT-fire simulations, and green dashed lines illustrate SWAT-normal simulations. (a) McKenzie
watershed; (b) North Santiam watershed.

11



H. Kang et al.

10
0 —4
g -10 )
(0]
2
< -20
ey
[&]
A N]
-40
) Unburned Low Moderate  High
(a) B severity and ET change-2021
10
0o §°*
= o B
~- °
"o
gJo .'1: °
w (J
€ -20 o‘.q“
Rt ® og°g® 00
|:‘ -30 0w’ 'q.' "
(X ) ® °
™40 ) '?','-..'
R“=0.93 ’
-50
0 200 400 600 800 1000
dNBR

(d) dNBR and ET change-2021

10
0 —%
a0
(0]
2
S -20
ey
[&]
w
) Unburned Low Moderate  High
(b) B severity and ET change-2022
10
— 0§
X NI
—-10 e.,
Q . ]
o1} o ‘o 0
< 20 o' h
2 s"‘: ,
G 30 2.
E ..0 ;.' °
-40 o0 Lagoee
R2=0.94  *%
-50 * ..
0 200 400 600 800 1000
dNBR

(e) dNBR and ET change-2022

Environmental Modelling and Software 198 (2026) 106896

10
0 ——
a0
Q
2
< -20
ey
(6]
- -30
w
) Unburned Low Moderate  High
(c) B severity and ET change-2023
10
0 e 8°
—_ . @
o\c -.* [ ]
i o &
o 220 ‘.’;‘ °
© ]
5 B
SRR .t
a0 ol ~Vo.
R2=0.94 ®°..0
-50 .
0 200 400 600 800 1000
dNBR

(f) dNBR and ET change-2023

Fig. 9. (a—c) Box and whisker plots showing simulated ET change (%) of the burned sub-watersheds from SWAT-fire across different burn severities for each post-fire
year in the McKenzie watershed. The boxes represent the 25th percentile, median, and 75th percentile values, while the whiskers extend to the minimum and
maximum values. The x' symbol indicates the mean. (d—f) Scatter plots illustrating the relationship between ET change and dNBR for each post-fire year.
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and maximum values. The ‘x' symbol indicates the mean. (d—f) Scatter plots illustrating the relationship between ET change and dNBR for each post-fire year.

importance of interpreting subsurface contributions within an appro-

priate hydrologic framework.

In SWAT, lateral flow and baseflow are represented as distinct

components, whereas many hydrologic studies define baseflow more

broadly as the portion of streamflow sustained by groundwater and
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other delayed subsurface pathways, including contributions from
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(a) McKenzie watershed: Burned sub-watersheds

SWAT-normal

SWAT-fire

Component

(a) North Santiam watershed: Burned sub-watersheds

Fig. 11. Average annual water balance under the SWAT-normal and SWAT-fire simulations during the post-fire years (October 2020 to September 2023) in the

burned sub-watersheds. (a) McKenzie watershed. (b) North Santiam watershed.

interflow (Price, 2011; Singh et al., 2019; Stoelzle et al., 2020). This
difference in terminology highlights that subsurface pathways are not
always conceptualized consistently across modeling and observational
studies. Consequently, this broader usage can cause confusion in dis-
tinguishing lateral and groundwater contributions. Recent modeling
studies further showed that shallow subsurface pathways, including
lateral flow, can play a dominant role in streamflow generation in
geologically complex or steep terrains (Sanchez-Gomez et al., 2024),
illustrating that lateral contributions can be substantial under certain
landscape conditions. These insights are important for interpreting our
water-balance results because the study watersheds are located in the
western Cascades, where steep topography and shallow flow paths
strongly influence runoff generation. In our study basins, subsurface
processes exert a major influence on total streamflow, with lateral flow
contributing substantially to the overall subsurface component. This
interpretation aligns with conceptual hydrologic understanding of the
western Cascades, where subsurface pathways frequently play an
important role in flow generation (McGuire and McDonnell, 2010).
Based on the modified calibration and the SWAT-fire simulation, we
demonstrated post-fire hydrologic dynamics, including increased runoff,
elevated streamflow, and reduced ET. Specifically, the SWAT-fire
simulation accurately captured notable reductions in ET and improved
simulations of high streamflow events, highlighting the sensitivity of
hydrologic responses to fire-induced parameter adjustments. We also
found that those hydrological changes were strongly related to fire
severity, reinforcing conclusions from previous studies.

Our findings are consistent with several previous studies, including
Kang et al. (2024), who reported substantial ET reductions and
increased runoff post-wildfire using remote sensing and field-based
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observations. Similarly, Wampler et al. (2023) observed increases in
post-fire streamflow, which was correlated with burn severity, under-
scoring the critical role of vegetation loss in altering hydrological re-
gimes. Other studies have also observed greater reductions in ET and
increases in runoff in watersheds burned at high severity compared to
lower severity burns (Hallema et al., 2018; Wine et al., 2018). These
results emphasized the critical role of fire severity in mediating post-fire
hydrological responses. Moreover, our results emphasized the impor-
tance of careful representation of burn severity to accurately predict the
magnitude of hydrological responses in post-fire hydrological modeling.
Integrating these insights into hydrological models, such as SWAT-fire,
can enhance predictive capabilities for forested watersheds impacted
by wildfire events.

Despite these methodological advancements, several uncertainties
remain in the wildfire simulation. The wildfire module simplified
complex post-fire processes, including changes in soil hydraulic prop-
erties and evolving surface characteristics. Recent studies have high-
lighted the complexity of wildfire-induced alterations in soil properties
based on field observations, revealing inconsistencies with our study.
For instance, Pimont (2024) reported no notable differences in soil hy-
draulic properties across burn severities in the Pacific Northwest, but
unexpected increases in hydraulic conductivity were found in the
burned areas. These findings contrasted with our model assumptions,
which anticipated increased runoff due to reduced infiltration capacity
after wildfires, highlighting limitations in current modeling frameworks
and the need for improved post-fire soil hydraulic information.

Moreover, ET calibration was conducted with remote sensing ob-
servations that have limitations in capturing site-specific variability. For
example, MODIS ET products may underestimate actual ET in densely
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forested regions (Mu et al., 2011). The accuracy of remote sensing-based
ET estimates potentially affect model calibration outcomes. While the
modified model generated better ET simulations compared to the default
model, uncertainties in ET observations and post-fire vegetation re-
sponses remain important factors influencing the accuracy of hydrologic
predictions. Addressing these limitations through long-term monitoring
and improved parameterization considering vegetation recovery would
enhance future wildfire-hydrology modeling efforts.

The temporal scale of our study, spanning three years post-fire,
provided valuable insights into immediate hydrologic responses but
represented only the initial stages of hydrologic recovery. Post-fire re-
covery trajectories typically extended over multiple years or even de-
cades (Ebel et al., 2022; Holden et al., 2012; Niemeyer et al., 2020).
Thus, our simulations likely captured only the initial hydrological re-
sponses and may not fully reflect longer-term recovery processes
involving vegetation regrowth, soil structure stabilization, and
ecosystem recovery dynamics. Ebel et al. (2022) provided a compre-
hensive framework for assessing hydrologic recovery, emphasizing
evaluating multiple metrics, such as soil infiltration, vegetation cover,
runoff generation, and channel responses over varying temporal scales.
Their study highlighted the complexity and variability inherent in hy-
drologic recovery, suggesting that vegetation regrowth rates, manage-
ment practices, and regional climatic conditions influence recovery
trajectories. Furthermore, climatic variability, management practices,
and other landscape disturbances occurring concurrently or after wild-
fires can significantly influence hydrologic responses to wildfires.

In addition, our study primarily examined immediate post-fire hy-
drologic impacts and did not explicitly incorporate the potential inter-
active effects of climate variability, such as droughts or unusually wet
conditions, nor management interventions like salvage logging and
reforestation efforts. Previous studies have highlighted that these factors
significantly influence hydrologic responses following wildfires (Ebel
et al., 2022; Wagenbrenner et al., 2021). A key advancement from our
work is developing a robust model calibration approach, which can be
leveraged to investigate these longer-term effects and their interactions
with climatic variables and management strategies. Incorporating these
considerations in future modeling will enhance our understanding of
watershed dynamics post-fire and improve predictive accuracy.
Although this study utilized SWAT 2012, the calibration framework and
wildfire-specific parameter adjustment presented here are compatible
with the structure of SWAT+, which includes enhanced spatial repre-
sentation and the capacity to simulate fire operations through its land
management module (Bieger et al., 2017). Future work integrating these
approaches into SWAT + would allow for a more flexible and
process-oriented simulation of post-fire hydrologic dynamics across
interconnected landscape units.

Finally, our current wildfire simulation utilized fixed adjusting pa-
rameters for the entire post-fire period, which may not always be real-
istic. Some studies have shown that post-fire processes, such as debris
flows, primarily occur within the first year following wildfire. For
instance, DeGRAFF et al. (2015) reported that the majority (85 %) of
debris flows occurred within 12 months post-fire, with 71 % within the
first six months. Similarly, Santi and Morandi (2013) noted that debris
flows from burned areas predominantly occurred within the first year.
Their findings suggested that the adjusted parameters should ideally be
dynamic rather than static over time to represent post-fire watershed
dynamics accurately.

5. Conclusion

In our study, we used a modified calibration technique that incor-
porated a more explicit forest and wildfire module into SWAT to
improve simulation of post-fire hydrologic responses in our study wa-
tersheds in Oregon, USA. By calibrating the model for ET fluxes and
recovery of LAI in forest ecosystems, in conjunction with streamflow,
SWAT was able to provide a more accurate depiction of wildfire severity
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effects on water balance and hydrological dynamics. Our model simu-
lations performed well at representing the variability in decreased ET
and corresponding increases in streamflow that were generally driven
by differences in burn severity. As such, our model outputs were
generally consistent with observations from the study watersheds.

These findings are particularly relevant in regions like the Pacific
Northwest, where large, high severity wildfires are occurring more
frequently. The improved accuracy of these simulations can inform
water and forest managers in wildfire-prone regions, providing them
with valuable tools for better planning and mitigation strategies, such as
evaluating future wildfire scenarios and refining region-specific man-
agement strategies based on projected climate and fire severity changes.
Anticipating changes in ET and streamflow after wildfire would help to
develop more proactive responses to protect water resources, enhance
ecosystem recovery, and reduce the risks associated with wildfire im-
pacts on water supply and quality.
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Software and data availability

Name of software: Soil and Water Assessment Tool (SWAT)
Developers: United States Department of Agriculture (USDA), Agri-
cultural Research Service (Dr. Jeff Arnold)

Year first available: 1998

Contact: https://swat.tamu.edu/support/

Cost: Free

Program language: Fortran

Software availability and source code: https://swat.tamu.edu/softw

are/swat/

e Documentation: Detailed documentation for application installation,

testing, and deployment can be found at https://swat.tamu.edu/

Data availability:

o The observed streamflow data can be downloaded free of charge
from the United States Geological Survey (USGS) National Water
Information System (NWIS) at: https://waterdata.usgs.gov/nwis.

The specific stream gage sites used in this study are publicly
accessible and were selected based on data availability and
proximity to the study watersheds.

o The MODIS evapotranspiration (ET) data used for model calibra-
tion are freely available from the NASA Earthdata portal: https:
//Ipdaac.usgs.gov/products/mod16a2v061/

The MOD16A2 Version 6 dataset provides 8-day composite ET
estimates at 500 m resolution globally.

o The MODIS Leaf Area Index (LAI) data used in the analysis can be
downloaded from NASA's LP DAAC: https://Ipdaac.usgs.gov/pro
ducts/mcd15a2hv061/.

o The burn severity data based on differenced Normalized Burn
Ratio (ANBR) were obtained from the Monitoring Trends in Burn
Severity (MTBS) project at: https://www.mtbs.gov.

MTBS provides standardized burn severity maps for large wild-
fires across the United States.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.


https://swat.tamu.edu/support/
https://swat.tamu.edu/software/swat/
https://swat.tamu.edu/software/swat/
https://swat.tamu.edu/
https://waterdata.usgs.gov/nwis
https://lpdaac.usgs.gov/products/mod16a2v061/
https://lpdaac.usgs.gov/products/mod16a2v061/
https://lpdaac.usgs.gov/products/mcd15a2hv061/
https://lpdaac.usgs.gov/products/mcd15a2hv061/
https://www.mtbs.gov

H. Kang et al.
Acknowledgements

This project was supported by a Cooperative Agreement
(UWSC13136) from the U.S. Geological Survey Northwest Climate
Adaptation Science Center to CEN. Its contents are solely the re-
sponsibility of the authors and do not necessarily represent the views of
the Northwest Climate Adaptation Science Center or the USGS. Addi-
tional funding was provided by the U.S. Forest Service, United States
(agreement number 22-JV-11261952-071). This manuscript is submit-
ted for publication with the understanding that the United States Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes.

Declaration of Al writing assistant: During the preparation of this
work, the first author (Hyunwoo Kang) used ChatGPT in some part of
manuscript to improve readability and grammar refinement. After using
this tool, all authors thoroughly reviewed and edited the content as
needed and took full responsibility for the published article.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envsoft.2026.106896.

References

Abatzoglou, J.T., Rupp, D.E., O'Neill, L.W., Sadegh, M., 2021. Compound extremes drive
the Western Oregon wildfires of September 2020. Geophys. Res. Lett. 48. https://
doi.org/10.1029/2021GL092520 €2021GL092520.

Abbaspour, K.C., 2014. SWAT-CUP 2012: SWAT Calibration and Uncertainty
programs—A User Manual: Swiss Federal Institute of Aquatic Science and
Technology.

Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Klgve, B.,
2015. A continental-scale hydrology and water quality model for Europe: calibration
and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 524,
733-752. https://doi.org/10.1016/j.jhydrol.2015.03.027.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic
modeling and assessment part I: model Developmentl. JAWRA J. Am. Water Resour.
Assoc. 34, 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961 .x.

Bart, R.R., Kennedy, M.C., Tague, C.L., McKenzie, D., 2020. Integrating fire effects on
vegetation carbon cycling within an ecohydrologic model. Ecol. Model. 416,
108880. https://doi.org/10.1016/j.ecolmodel.2019.10888.

Basso, M., Vieira, D.C.S., Ramos, T.B., Mateus, M., 2020. Assessing the adequacy of
SWAT model to simulate postfire effects on the watershed hydrological regime and
water quality. Land Degrad. Dev. 31, 619-631. https://doi.org/10.1002/1dr.3476.

Bieger, K., Arnold, J.G., Rathjens, H., White, M.J., Bosch, D.D., Allen, P.M., Volk, M.,
Srinivasan, R., 2017. Introduction to SWAT+, a completely restructured version of
the soil and water assessment tool. JAWRA J. Am. Water Resour. Assoc. 53,
115-130. https://doi.org/10.1111/1752-1688.12482.

Bladon, K.D., Emelko, M.B., Silins, U., Stone, M., 2014. Wildfire and the future of water
supply. Environ. Sci. Technol. 48, 8936-8943. https://doi.org/10.1021/es500130g.

Collar, N.M., Saxe, S., Rust, A.J., Hogue, T.S., 2021. A CONUS-scale study of wildfire and
evapotranspiration: spatial and temporal response and controlling factors. J. Hydrol.
603, 127162. https://doi.org/10.1016/j.jhydrol.2021.127162.

Dangol, S., Zhang, X., Liang, X.-Z., Anderson, M., Crow, W., Lee, S., Moglen, G.E.,
McCarty, G.W., 2023. Multivariate calibration of the SWAT model using remotely
sensed datasets. Remote Sens. 15, 2417. https://doi.org/10.3390/rs15092417.

DeGRAFF, J.V., Cannon, S.H., Gartner, J.E., 2015. The timing of susceptibility to post-fire
debris flows in the Western United States. Environ. Eng. Geosci. 21, 277-292.
https://doi.org/10.2113/gseegeosci.21.4.277.

Devkota, N., Lamichhane, S., Bhattarai, P.K., 2024. Multi-site calibration of the SWAT
hydrological model and study of spatio-temporal variation of water balance
components in the Narayani River basin, central part of Nepal. H2O0pen J. 7,
114-129. https://doi.org/10.2166,/h20j.2024.084.

Dewitz, J., USGS, 2021. National Land Cover Database (NLCD) 2019 products (ver. 3.0,
February 2024). U.S. Geol. Survey data release.

Dobre, M., Srivastava, A., Lew, R., Deval, C., Brooks, E.S., Elliot, W.J., Robichaud, P.R.,
2022. WEPPcloud: an online watershed-scale hydrologic modeling tool. Part II.
Model performance assessment and applications to forest management and wildfires.
J. Hydrol. 610, 127776. https://doi.org/10.1016/j.jhydrol.2022.127776.

Ebel, B.A., Moody, J.A., 2020. Parameter estimation for multiple post-wildfire hydrologic
models. Hydrol. Process. 34, 4049-4066. https://doi.org/10.1002/hyp.13865.

Ebel, B.A., Moody, J.A., Martin, D.A., 2012. Hydrologic conditions controlling runoff
generation immediately after wildfire. Water Resour. Res. 48. https://doi.org/
10.1029/2011WR011470.

Ebel, B.A., Wagenbrenner, J.W., Kinoshita, A.M., Bladon, K.D., 2022. Hydrologic
recovery after wildfire: a framework of approaches, metrics, criteria, trajectories,
and timescales. J. Hydrol. Hydromechanics 70, 388-400. https://doi.org/10.2478/
johh-2022-0033.

15

Environmental Modelling and Software 198 (2026) 106896

Ebel, B.A., Shephard, Z.M., Walvoord, M.A., Murphy, S.F., Partridge, T.F., Perkins, K.S.,
2023. Modeling post-wildfire hydrologic response: review and future directions for
applications of physically based distributed simulation. Earths Future 11. https://
doi.org/10.1029/2022EF003038 e2022EF003038.

Elliot, W.J., 2004. Wepp internet interfaces for forest erosion Prediction 1. JAWRA J.
Am. Water Resour. Assoc. 40, 299-309. https://doi.org/10.1111/j.1752-1688.2004.
tb01030.x.

Emmerton, C.A., Cooke, C.A., Hustins, S., Silins, U., Emelko, M.B., Lewis, T., Kruk, M.K.,
Taube, N., Zhu, D., Jackson, B., Stone, M., Kerr, J.G., Orwin, J.F., 2020. Severe
Western Canadian wildfire affects water quality even at large basin scales. Water
Res. 183, 116071. https://doi.org/10.1016/j.watres.2020.116071.

Geological Survey, U.S., 2022. 1 Arc-second digital elevation models (DEMs). at URL. htt
ps://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428¢
29a5b. (Accessed 19 October 2022).

Gonzalez-Pelayo, O., Prats, S.A., van den Elsen, E., Malvar, M.C., Ritsema, C.,

Bautista, S., Keizer, J.J., 2024. The effects of wildfire frequency on post-fire soil
surface water dynamics. Eur. J. For. Res. 143, 493-508. https://doi.org/10.1007/
$10342-023-01635-z.

Haas, H., Kalin, L., Srivastava, P., 2022a. Improved forest dynamics leads to better
hydrological predictions in watershed modeling. Sci. Total Environ. 821, 153180.
https://doi.org/10.1016/j.scitotenv.2022.153180.

Haas, H., Reaver, N.G.F., Karki, R., Kalin, L., Srivastava, P., Kaplan, D.A., Gonzalez-
Benecke, C., 2022b. Improving the representation of forests in hydrological models.
Sci. Total Environ. 812, 151425. https://doi.org/10.1016/j.scitotenv.2021.151425.

Hallema, D.W., Sun, G., Caldwell, P.V., Norman, S.P., Cohen, E.C., Liu, Y., Ward, E.J.,
McNulty, S.G., 2017. Assessment of wildland fire impacts on watershed annual water
yield: analytical framework and case studies in the United States. Ecohydrology 10,
el794. https://doi.org/10.1002/eco0.1794.

Hallema, D.W., Sun, G., Caldwell, P.V., Norman, S.P., Cohen, E.C., Liu, Y., Bladon, K.D.,
McNulty, S.G., 2018. Burned forests impact water supplies. Nat. Commun. 9, 1307.
https://doi.org/10.1038/s41467-018-03735-6.

Hanan, E.J., Ren, J., Tague, C.L., Kolden, C.A., Abatzoglou, J.T., Bart, R.R., Kennedy, M.
C., Liu, M., Adam, J.C., 2021. How climate change and fire exclusion drive wildfire
regimes at actionable scales. Environ. Res. Lett. 16, 024051. https://doi.org/
10.1088/1748-9326/abd78e.

Her, Y., Frankenberger, J., Chaubey, 1., Srinivasan, R., 2015. Threshold effects in HRU
definition of the soil and water assessment tool. Trans. ASABE 58, 367-378.

Holden, Z.A., Luce, C.H., Crimmins, M.A., Morgan, P., 2012. Wildfire extent and severity
correlated with annual streamflow distribution and timing in the Pacific Northwest,
USA (1984-2005). Ecohydrology 5, 677-684. https://doi.org/10.1002/eco.257.

Jefferson, A., Grant, G., Rose, T., 2006. Influence of volcanic history on groundwater
patterns on the west slope of the Oregon high cascades. Water Resour. Res. 42.
https://doi.org/10.1029/2005WR004812.

Kang, H., Cole, R.P., Miralha, L., Compton, J.E., Bladon, K.D., 2024. Hydrologic
responses to wildfires in Western Oregon, USA. J. Hydrol. 639, 131612. https://doi.
0rg/10.1016/j.jhydrol.2024.131612.

Keeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review and
suggested usage. Int. J. Wildland Fire 18, 116-126. https://doi.org/10.1071/
WEF07049.

Key, C.H., Benson, N.C., 2006. Landscape Assessment: Ground Measure of Severity, the
Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio.
(FIREMON: Fire Effects Monitoring and Inventory System.). USDA Forest Service,
Rocky Mountain Research Station, Ogden, UT.

Kiesel, J., Schmalz, B., Brown, G.L., Fohrer, N., 2013. Application of a hydrological-
hydraulic modelling cascade in lowlands for investigating water and sediment fluxes
in catchment, channel and reach. J. Hydrol. Hydromechanics 61, 334-346.

Koltsida, E., Kallioras, A., 2022. Multi-variable SWAT model calibration using satellite-
based evapotranspiration data and streamflow. Hydrology 9, 112. https://doi.org/
10.3390/hydrology9070112.

Kraus, T.E.C., Anderson, C.A., Morgenstern, K., Downing, B.D., Pellerin, B.A.,
Bergamaschi, B.A., 2010. Determining sources of dissolved organic carbon and
disinfection byproduct precursors to the McKenzie river, Oregon. J. Environ. Qual.
39, 2100-2112. https://doi.org/10.2134/jeq2010.0030.

Lai, G., Luo, J., Li, Q., Qiu, L., Pan, R., Zeng, X., Zhang, L., Yi, F., 2020. Modification and
validation of the SWAT model based on multi-plant growth mode, a case study of the
Meijiang River basin, China. J. Hydrol. 585, 124778. https://doi.org/10.1016/j.
jhydrol.2020.124778.

Lee, S., Kim, D., McCarty, G.W., Anderson, M., Gao, F., Lei, F., Moglen, G.E., Zhang, X.,
Yen, H., Qi, J., Crow, W., 2024. Spatial calibration and uncertainty reduction of the
SWAT model using multiple remotely sensed data. Heliyon 10, e30923. https://doi.
org/10.1016/j.heliyon.2024.e30923.

Li, Z., Li, B., Jiang, P., Hammond, G.E., Shuai, P., Coon, E., Chen, X., 2023. Evaluating
the Effects of Burn Severity and Precipitation on Post-fire Watershed Responses
Using Distributed Hydrologic Models.

Loiselle, D., Du, X., Alessi, D.S., Bladon, K.D., Faramarzi, M., 2020. Projecting impacts of
wildfire and climate change on streamflow, sediment, and organic carbon yields in a
forested watershed. J. Hydrol. 590, 125403. https://doi.org/10.1016/j.
jhydrol.2020.125403.

Long, W.B., Chang, H., 2022. Event scale analysis of streamflow response to wildfire in
Oregon, 2020. Hydrology 9, 157. https://doi.org/10.3390/hydrology9090157.

Ma, Q., Bales, R.C., Rungee, J., Conklin, M.H., Collins, B.M., Goulden, M.L., 2020.
Wildfire controls on evapotranspiration in California's Sierra Nevada. J. Hydrol. 590,
125364. https://doi.org/10.1016/.jhydrol.2020.125364.

McGuire, K.J., McDonnell, J.J., 2010. Hydrological connectivity of hillslopes and
streams: characteristic time scales and nonlinearities. Water Resour. Res. 46. https://
doi.org/10.1029/2010WR009341.


https://doi.org/10.1016/j.envsoft.2026.106896
https://doi.org/10.1016/j.envsoft.2026.106896
https://doi.org/10.1029/2021GL092520
https://doi.org/10.1029/2021GL092520
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref2
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref2
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref2
https://doi.org/10.1016/j.jhydrol.2015.03.027
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1016/j.ecolmodel.2019.10888
https://doi.org/10.1002/ldr.3476
https://doi.org/10.1111/1752-1688.12482
https://doi.org/10.1021/es500130g
https://doi.org/10.1016/j.jhydrol.2021.127162
https://doi.org/10.3390/rs15092417
https://doi.org/10.2113/gseegeosci.21.4.277
https://doi.org/10.2166/h2oj.2024.084
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref13
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref13
https://doi.org/10.1016/j.jhydrol.2022.127776
https://doi.org/10.1002/hyp.13865
https://doi.org/10.1029/2011WR011470
https://doi.org/10.1029/2011WR011470
https://doi.org/10.2478/johh-2022-0033
https://doi.org/10.2478/johh-2022-0033
https://doi.org/10.1029/2022EF003038
https://doi.org/10.1029/2022EF003038
https://doi.org/10.1111/j.1752-1688.2004.tb01030.x
https://doi.org/10.1111/j.1752-1688.2004.tb01030.x
https://doi.org/10.1016/j.watres.2020.116071
https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b
https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b
https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b
https://doi.org/10.1007/s10342-023-01635-z
https://doi.org/10.1007/s10342-023-01635-z
https://doi.org/10.1016/j.scitotenv.2022.153180
https://doi.org/10.1016/j.scitotenv.2021.151425
https://doi.org/10.1002/eco.1794
https://doi.org/10.1038/s41467-018-03735-6
https://doi.org/10.1088/1748-9326/abd78e
https://doi.org/10.1088/1748-9326/abd78e
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref28
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref28
https://doi.org/10.1002/eco.257
https://doi.org/10.1029/2005WR004812
https://doi.org/10.1016/j.jhydrol.2024.131612
https://doi.org/10.1016/j.jhydrol.2024.131612
https://doi.org/10.1071/WF07049
https://doi.org/10.1071/WF07049
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref34
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref34
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref34
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref34
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref35
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref35
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref35
https://doi.org/10.3390/hydrology9070112
https://doi.org/10.3390/hydrology9070112
https://doi.org/10.2134/jeq2010.0030
https://doi.org/10.1016/j.jhydrol.2020.124778
https://doi.org/10.1016/j.jhydrol.2020.124778
https://doi.org/10.1016/j.heliyon.2024.e30923
https://doi.org/10.1016/j.heliyon.2024.e30923
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref40
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref40
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref40
https://doi.org/10.1016/j.jhydrol.2020.125403
https://doi.org/10.1016/j.jhydrol.2020.125403
https://doi.org/10.3390/hydrology9090157
https://doi.org/10.1016/j.jhydrol.2020.125364
https://doi.org/10.1029/2010WR009341
https://doi.org/10.1029/2010WR009341

H. Kang et al.

Moody, J.A., Ebel, B.A., Nyman, P., Martin, D.A., Stoof, C., McKinley, R., 2015. Relations
between soil hydraulic properties and burn severity. Int. J. Wildland Fire 25,
279-293. https://doi.org/10.1071/WF14062.

MTBS, 2024. Monitoring trends in burn severity (MTBS). URL. https://www.mtbs.gov/.
(Accessed 19 August 2024).

Mu, Q., Zhao, M., Running, S.W., 2011. Improvements to a MODIS global terrestrial
evapotranspiration algorithm. Remote Sens. Environ. 115, 1781-1800. https://doi.
org/10.1016/j.rse.2011.02.019.

Myneni, R., Knyazikhin, Y., Park, T., 2015. MOD15A2H MODIS/Terra leaf area Index/
FPAR 8-Day L4 global 500m SIN grid VO06. NASA EOSDIS Land Processes DAAC.

Narsimlu, B., Gosain, A.K., Chahar, B.R., Singh, S.K., Srivastava, P.K., 2015. SWAT model
calibration and uncertainty analysis for streamflow prediction in the Kunwari River
basin, India, using sequential uncertainty fitting. Environ. Processes 2, 79-95.
https://doi.org/10.1007/540710-015-0064-8.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I
— a discussion of principles. J. Hydrol. 10, 282-290. https://doi.org/10.1016/002.2-
1694(70)90255-6.

Natural Resources Conservation Service (NRCS), 2025. United States department of
agriculture. Web Soil Survey. http://websoilsurvey.nres.usda.gov/. (Accessed 4
October 2025).

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil and Water Assessment
Tool Theoretical Documentation Version 2009 (No. No. 406). Texas Water Resources
Institute Technical Report. Texas A & M University System, College Station, TX.

Niemeyer, R.J., Bladon, K.D., Woodsmith, R.D., 2020. Long-term hydrologic recovery
after wildfire and post-fire forest management in the interior Pacific northwest.
Hydrol. Process. 34, 1182-1197. https://doi.org/10.1002/hyp.13665.

Oregon Department of Forestry, 2022. Forest Facts, 2020 Labor Day Fires: Post-Fire
Challenges with Invasive Plants.

Parajuli, P.B., Jayakody, P., Ouyang, Y., 2018. Evaluation of using remote sensing
evapotranspiration data in SWAT. Water Resour. Manag. 32, 985-996. https://doi.
org/10.1007/s11269-017-1850-z.

Pimont, C., 2024. Effects of Wildfire on Soil Hydraulic Properties in the Western Oregon
Cascades. Oregon State University.

Poon, P.K., Kinoshita, A.M., 2018. Spatial and temporal evapotranspiration trends after
wildfire in semi-arid landscapes. J. Hydrol. 559, 71-83. https://doi.org/10.1016/].
jhydrol.2018.02.023.

Price, K., 2011. Effects of watershed topography, soils, land use, and climate on baseflow
hydrology in humid regions: a review. Prog. Phys. Geogr. 35, 465-492. https://doi.
org/10.1177/030913331140271.

PRISM Climate Group, 2022. PRISM 30 Years Precipitation Data (4Km).

Robinne, F.-N., Hallema, D.W., Bladon, K.D., Buttle, J.M., 2020. Wildfire impacts on
hydrologic ecosystem services in North American high-latitude forests: a scoping
review. J. Hydrol. 581, 124360. https://doi.org/10.1016/j.jhydrol.2019.124360.

Running, S., Mu, Q., Zhao, M., 2017. Mod16a2 modis/terra net evapotranspiration 8-day
14 global 500m sin grid v006. NASA EOSDIS Land Processes DAAC 6.

Séanchez-Gémez, A., Schiirz, C., Molina-Navarro, E., Bieger, K., 2024. Groundwater
modelling in SWAT+: considerations for a realistic baseflow simulation. Groundw.
Sustain. Dev. 26, 101275. https://doi.org/10.1016/j.gsd.2024.101275.

Santi, P.M., Morandi, L., 2013. Comparison of debris-flow volumes from burned and
unburned areas. Landslides 10, 757-769. https://doi.org/10.1007/s10346-012-
0354-4.

Saxe, S., Hogue, T.S., Hay, L., 2018. Characterization and evaluation of controls on post-
fire streamflow response across Western US watersheds. Hydrol. Earth Syst. Sci. 22,
1221-1237. https://doi.org/10.5194/hess-22-1221-2018.

Singh, S.K., Pahlow, M., Booker, D.J., Shankar, U., Chamorro, A., 2019. Towards
baseflow index characterisation at national scale in New Zealand. J. Hydrol. 568,
646-657. https://doi.org/10.1016/j.jhydrol.2018.11.025.

Snyder, K.U., Sullivan, T.J., Raymond, R.B., Moore, D., 2002. North Santiam River
Watershed Assessment. E&S Environmental Chemistry. Inc., Corvallis, OR.

Spencer, S.A., Winkler, R.D., 2024. Changes in snow-dominated streamflow quantity and
timing following an extensive wildfire in British Columbia. Hydrol. Process. 38,
€15278. https://doi.org/10.1002/hyp.15278.

16

Environmental Modelling and Software 198 (2026) 106896

Stevens, J.T., Boisramé, G.F.S., Rakhmatulina, E., Thompson, S.E., Collins, B.M.,
Stephens, S.L., 2020. Forest vegetation change and its impacts on soil water
following 47 years of managed wildfire. Ecosystems 23, 1547-1565. https://doi.org/
10.1007/5s10021-020-00489-5.

Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K., Tallaksen, L.M., 2020. Beyond binary
baseflow separation: a delayed-flow index for multiple streamflow contributions.
Hydrol. Earth Syst. Sci. 24, 849-867. https://doi.org/10.5194/hess-24-849-2020.

Stoof, C.R., Vervoort, R.W., Iwema, J., van den Elsen, E., Ferreira, A.J.D., Ritsema, C.J.,
2012. Hydrological response of a small catchment burned by experimental fire.
Hydrol. Earth Syst. Sci. 16, 267-285. https://doi.org/10.5194/hess-16-267-2012.

Tague, C.L., Band, L.E., 2004. RHESSys: regional hydro-ecologic simulation system—an
object-oriented approach to spatially distributed modeling of carbon, water, and
nutrient cycling. Earth Interact. 8, 1-42. https://doi.org/10.1175/1087-3562(2004)
8<1:RRHSSO>2.0.CO;2.

Tague, C., Grant, G.E., 2004. A geological framework for interpreting the low-flow
regimes of Cascade streams, Willamette River basin, Oregon. Water Resour. Res. 40.
https://doi.org/10.1029/2003WR002629.

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S.-C., Wilson, B.E., 2022.
Daymet: Daily Surface Weather Data on a 1-km Grid for North America. Version 4
RI1.

Tobin, K.J., Bennett, M.E., 2017. Constraining SWAT calibration with remotely sensed
evapotranspiration data. JAWRA J. Am. Water Resour. Assoc. 53, 593-604. https://
doi.org/10.1111/1752-1688.12516.

U.S. Army Corps of Engineers, 2025. Dataquery 2.0: query timeseries from USACE
Northwestern division. https://www.nwd.usace.army.mil/CRWM/. (Accessed 4
August 2025).

Wagenbrenner, J.W., Ebel, B.A., Bladon, K.D., Kinoshita, A.M., 2021. Post-wildfire
hydrologic recovery in mediterranean climates: a systematic review and case study
to identify current knowledge and opportunities. J. Hydrol. 602, 126772. https://
doi.org/10.1016/j.jhydrol.2021.126772.

Wampler, K.A., Bladon, K.D., Faramarzi, M., 2023. Modeling wildfire effects on
streamflow in the Cascade Mountains, Oregon, USA. J. Hydrol. 621, 129585.
https://doi.org/10.1016/j.jhydrol.2023.129585.

White, J.T., Fienen, M.N., Barlow, P.M., Welter, D.E., 2018. A tool for efficient, model-
independent management optimization under uncertainty. Environ. Model. Software
100, 213-221. https://doi.org/10.1016/j.envsoft.2017.11.019.

Williams, C.H.S., Silins, U., Spencer, S.A., Wagner, M.J., Stone, M., Emelko, M.B., 2019.
Net precipitation in burned and unburned subalpine forest stands after wildfire in
the Northern Rocky Mountains. Int. J. Wildland Fire 28, 750-760. https://doi.org/
10.1071/WF18181.

Wine, M.L., Cadol, D., Makhnin, O., 2018. In ecoregions across Western USA streamflow
increases during post-wildfire recovery. Environ. Res. Lett. 13, 014010. https://doi.
org/10.1088/1748-9326/aa9c5a.

Wu, J., Baartman, J.E.M., Nunes, J.P., 2021. Comparing the impacts of wildfire and
meteorological variability on hydrological and erosion responses in a mediterranean
catchment. Land Degrad. Dev. 32, 640-653. https://doi.org/10.1002/1dr.3732.

Yang, Q., Zhang, X., 2016. Improving SWAT for simulating water and carbon fluxes of
forest ecosystems. Sci. Total Environ. 569-570, 1478-1488. https://doi.org/
10.1016/j.scitotenv.2016.06.238.

Yang, J., Reichert, P., Abbaspour, K.C., Xia, J., Yang, H., 2008. Comparing uncertainty
analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol.
358, 1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012.

Yang, Y., Hu, X., Han, M., He, K., Liu, B., Jin, T., Cao, X., Wang, Y., Huang, J., 2022. Post-
fire temporal trends in soil properties and revegetation: insights from different
wildfire severities in the Hengduan Mountains, Southwestern China. Catena 213,
106160. https://doi.org/10.1016/j.catena.2022.106160.

Zhang, H., Wang, B., Liu, D.L., Zhang, M., Leslie, L.M., Yu, Q., 2020. Using an improved
SWAT model to simulate hydrological responses to land use change: a case study of a
catchment in tropical Australia. J. Hydrol. 585, 124822. https://doi.org/10.1016/j.
jhydrol.2020.124822.


https://doi.org/10.1071/WF14062
https://www.mtbs.gov/
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1016/j.rse.2011.02.019
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref48
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref48
https://doi.org/10.1007/s40710-015-0064-8
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
http://websoilsurvey.nrcs.usda.gov/
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref52
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref52
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref52
https://doi.org/10.1002/hyp.13665
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref54
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref54
https://doi.org/10.1007/s11269-017-1850-z
https://doi.org/10.1007/s11269-017-1850-z
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref56
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref56
https://doi.org/10.1016/j.jhydrol.2018.02.023
https://doi.org/10.1016/j.jhydrol.2018.02.023
https://doi.org/10.1177/030913331140271
https://doi.org/10.1177/030913331140271
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref59
https://doi.org/10.1016/j.jhydrol.2019.124360
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref61
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref61
https://doi.org/10.1016/j.gsd.2024.101275
https://doi.org/10.1007/s10346-012-0354-4
https://doi.org/10.1007/s10346-012-0354-4
https://doi.org/10.5194/hess-22-1221-2018
https://doi.org/10.1016/j.jhydrol.2018.11.025
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref66
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref66
https://doi.org/10.1002/hyp.15278
https://doi.org/10.1007/s10021-020-00489-5
https://doi.org/10.1007/s10021-020-00489-5
https://doi.org/10.5194/hess-24-849-2020
https://doi.org/10.5194/hess-16-267-2012
https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2
https://doi.org/10.1029/2003WR002629
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref73
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref73
http://refhub.elsevier.com/S1364-8152(26)00043-5/sref73
https://doi.org/10.1111/1752-1688.12516
https://doi.org/10.1111/1752-1688.12516
https://www.nwd.usace.army.mil/CRWM/
https://doi.org/10.1016/j.jhydrol.2021.126772
https://doi.org/10.1016/j.jhydrol.2021.126772
https://doi.org/10.1016/j.jhydrol.2023.129585
https://doi.org/10.1016/j.envsoft.2017.11.019
https://doi.org/10.1071/WF18181
https://doi.org/10.1071/WF18181
https://doi.org/10.1088/1748-9326/aa9c5a
https://doi.org/10.1088/1748-9326/aa9c5a
https://doi.org/10.1002/ldr.3732
https://doi.org/10.1016/j.scitotenv.2016.06.238
https://doi.org/10.1016/j.scitotenv.2016.06.238
https://doi.org/10.1016/j.jhydrol.2008.05.012
https://doi.org/10.1016/j.catena.2022.106160
https://doi.org/10.1016/j.jhydrol.2020.124822
https://doi.org/10.1016/j.jhydrol.2020.124822

	Modeling hydrologic response to wildfires in the Pacific Northwest with a modified calibration technique
	1 Introduction
	2 Methods
	2.1 Study area
	2.2 SWAT model background and calibration
	2.3 Wildfire module and evaluation

	3 Results
	3.1 Base model calibration for forested systems
	3.2 Comparison of water balance partitioning
	3.3 Wildfire simulation
	3.3.1 Comparison of simulated runoff and ET before and after wildfire for SWAT-normal and SWAT-fire simulations
	3.3.2 Water balance partitioning


	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Software and data availability
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


