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A B S T R A C T

The 2020 Labor Day fires in the Western Cascades of Oregon, USA, burned extensive forested areas, which 
altered hydrologic processes, water quality, aquatic ecosystems, and drinking water resources. Understanding 
wildfire severity effects on hydrologic processes is crucial for improved water resource management. Our study 
assessed wildfire severity impacts on hydrology using a modified calibration method for the Soil and Water 
Assessment Tool (SWAT) model. Calibration incorporated evapotranspiration and leaf area index to represent 
vegetation loss and hydrologic impacts. We also integrated a wildfire module to simulate fire effects on soil and 
vegetation parameters. This improved modeling approach effectively captured post-fire hydrologic behavior, 
especially increased high streamflows and reduced evapotranspiration, with greater changes linked to higher 
burn severity. These findings emphasize the importance of considering fire severity in hydrologic modeling, 
aiding proactive management and mitigation strategies to protect water supply and enhance ecosystem resilience 
in wildfire-prone regions.

1. Introduction

Larger, more severe wildfires have increased in the Pacific Northwest 
(PNW) in recent decades, raising concerns about effects on hydrologic 
processes, streamflow, water quality, aquatic ecosystems, and drinking 
water treatment (Bladon et al., 2014; Robinne et al., 2020). Wildfires 
can have significant and long-lasting impacts on many hydrological 
processes (Long and Chang, 2022; Robinne et al., 2020). For example, 
loss of forest canopy and ground cover can lead to decreased intercep
tion losses and greater net precipitation (Ma et al., 2020; Williams et al., 
2019). Despite this increase in net precipitation, numerous studies have 
observed reductions in evapotranspiration (ET) at stand or watershed 
scales due to vegetation loss (Collar et al., 2021; Ma et al., 2020; Nie
meyer et al., 2020; Poon and Kinoshita, 2018). In addition to the ET 
reduction, the combined effects of additional water reaching the soil 
surface and altered runoff pathways often lead to changes in peak flows, 
and annual water yields, which can persist for many years after a 
wildfire (Hallema et al., 2017; Holden et al., 2012; Stoof et al., 2012). 
Furthermore, wildfires modify soil physical properties, such as surface 
sealing, ash deposition, and development of water-repellent layers, 

leading to altered infiltration, surface runoff, hillslope runoff, and 
erosion processes (Ebel et al., 2012; Ebel and Moody, 2020; Moody et al., 
2015). These soil alterations also affect soil moisture dynamics by 
altering soil physical properties (González-Pelayo et al., 2024; Stevens 
et al., 2020), potentially influencing vegetation recovery and plant 
regrowth after wildfire disturbances (Yang et al., 2022).

Fire severity, which refers to the extent of vegetation impacts, and 
soil alteration caused by a wildfire, is a critical determinant of post-fire 
hydrological changes. For instance, Kang et al. (2024) studied the effects 
of the 2020 Labor Day Fires in the Western Cascades of Oregon on runoff 
and ET in several catchments and found that decreases in ET and in
creases in runoff were strongly correlated with burn severity and burned 
area. Additionally, a study in the Pacific Northwest region found that 
watersheds burned at medium to high severity experienced post-fire 
peak flow increases of 21–34 %, while low severity areas tended to 
have minimal (~2 %) impacts on peak flows (Li et al., 2023). However, 
the relationship between fire severity and hydrological responses is 
complex and influenced by various factors, leading to substantial un
certainty and variability in outcomes (Saxe et al., 2018; Spencer and 
Winkler, 2024). In addition, empirical studies are often constrained 
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spatially and temporally, which limits the transferability of knowledge 
and our ability to make accurate predictions (Emmerton et al., 2020; Wu 
et al., 2021).

Hydrologic models are often used as an effective tool for examining 
wildfire impacts on hydrology under multiple post-fire scenarios and 
scales because they incorporate complex hydrologic processes (Ebel 
et al., 2023; Kiesel et al., 2013; Loiselle et al., 2020; Wampler et al., 
2023). Many hydrologic models have been adapted and used to evaluate 
hydrologic response to wildfires, with different models suited to various 
spatial and temporal scales (Ebel et al., 2023). For example, the Regional 
Hydro-Ecologic Simulation System (RHESSys; Tague and Band, 2004) 
model was used to assess catchment-scale effects from wildfire on 
vegetation carbon cycle (Bart et al., 2020), and impacts of climate 
change on wildfire regimes (Hanan et al., 2021). Similarly, the Water 
Erosion Prediction Project (WEPP; Elliot, 2004) is a process-based hy
drology and erosion model used to simulate wildfire effects on water 
quantity and quality (Dobre et al., 2022). These examples illustrate how 
different models operate at varying spatial scales, with each model of
fering unique strengths in capturing specific aspects of fire-hydrology 
interactions.

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998; 
Neitsch et al., 2011) model is a semi-distributed, continuous, and 
process-based model, which has increasingly been used in recent years 
to evaluate wildfire impacts on hydrology at a river basin scales (Basso 
et al., 2020; Loiselle et al., 2020; Wampler et al., 2023). Compared to 
other hydrologic models used to evaluate wildfire effects on hydrology, 
SWAT has been applied to relatively large-scale watersheds and has 
reduced process complexity compared to other models (Ebel et al., 
2023). Originally developed for use primarily in agricultural systems, 
SWAT has been modified to improve hydrological simulations in 
forested ecosystems by updating plant growth, forest dynamics, and 
nutrient cycling (Lai et al., 2020; Yang and Zhang, 2016; Zhang et al., 
2020). More recently, Haas et al. (2022a, 2022b) proposed a new cali
bration method to improve simulation of forest processes by repar
ameterization of forest vegetation, including the calibration of ET, 
biomass, and leaf area index (LAI), leading to improved water balance 
simulations in forested watersheds. These modifications have improved 
the suitability of SWAT for modeling wildfire-induced changes in hy
drology across large watersheds while maintaining computational 
efficiency.

In recent decades, there has been a substantial increase in the 
amount and type of hydrologic data available from satellite and remote 
sensing products, including data on precipitation, soil moisture, 
groundwater levels, snow cover, and evapotranspiration, which have 
improved our ability to understand the hydrologic cycle. Among the 
datasets representing ET, NASA's Moderate Resolution Imaging Spec
trometer (MODIS) dataset has been widely used for calibration with the 
SWAT model in the US (Dangol et al., 2023; Koltsida and Kallioras, 
2022). Multiple studies have used MODIS ET data to calibrate SWAT and 
achieve improved watershed model predictions (Parajuli et al., 2018; 
Tobin and Bennett, 2017), demonstrating the value of using remote 
sensing-based ET data. However, previous wildfire studies using the 
SWAT model have not incorporated ET calibration specifically in 
forested watersheds. While other studies have used SWAT to examine 
wildfire impacts on streamflow and peak flow (Wampler et al., 2023), 
and improved it for use in forested watersheds by integrating ET and LAI 
calibration (Haas et al., 2022b), no study has combined both of these 
calibrations in the context of wildfire-affected forested watersheds. 
Therefore, SWAT has been underutilized for addressing post-fire hy
drological dynamics and fire severity effects. Recently, the SWAT +
model (Bieger et al., 2017) has been developed as the latest generation 
of the SWAT family, providing enhanced spatial flexibility and improved 
representation of land management operations, including the capability 
to incorporate fire operations within the management module. Our 
study used the SWAT 2012 version, which remains widely applied and 
validated for wildfire-related hydrologic simulations (Wampler et al., 

2023), while the calibration framework and wildfire parameterization 
presented here are consistent with the structural concepts introduced in 
SWAT+.

In our study, we built on these recently developed methods for 
improved calibration of SWAT simulation of forest and wildfire dy
namics. We implemented additional wildfire calibration steps to further 
improve the wildfire module, and we evaluated the modified SWAT 
simulations of wildfire-driven hydrologic change. By addressing this 
gap, we aimed to advance the use of SWAT for wildfire impact analysis 
in forested watersheds. Specifically, we evaluated impacts of large, high 
severity wildfires on hydrological fluxes in two basins in the Western 
Cascades of Oregon, USA that burned during the 2020 Labor Day Fires. 
During these events, five large wildfires (Archie Creek, Beachie Creek, 
Holiday Farm, Lionshead, and Riverside) burned more than 343,900 ha 
and destroyed more than 4000 homes (Oregon Department of Forestry, 
2022). Unusually dry conditions and strong east winds helped fuel the 
fires and caused them to spread quickly and burn severely (Abatzoglou 
et al., 2021). These events highlighted critical knowledge gaps regarding 
how wildfire severity influences post-fire changes in ET, runoff, and 
streamflow, and overall water balance. The specific objectives of our 
study were to: 

a. Develop and apply a modified calibration technique and wildfire 
module to the SWAT model to simulate hydrological fluxes in 
forested watersheds affected by wildfire;

b. Use empirical hydrological data to evaluate the pre- and post-fire 
performance of simulations from the default and modified SWAT 
calibration techniques;

c. Assess post-fire hydrological responses, including changes in ET, 
runoff, streamflow, and annual water balance; and

d. Evaluate the role of fire severity in mediating post-fire hydrological 
responses.

2. Methods

2.1. Study area

For our study, we selected two large sub-basins in the Cascade Range 
in Oregon, USA, which are tributaries of the Willamette River Basin 
(Fig. 1). The McKenzie River sub-basin provides drinking water to about 
200,000 people in the Eugene area in Oregon (Kraus et al., 2010), and 
the North Santiam River sub-basin supplies water to approximately 200, 
000 residents in the Salem area in Oregon. The watersheds are located 
within a Mediterranean climate with dry, warm summers and cool, wet 
winters (Snyder et al., 2002). Average annual precipitation of the two 
watersheds is 2204 mm, but varies from 1124 mm to 3164 mm due to 
orographic effects (PRISM Climate Group, 2022). Elevation across the 
sub-basins ranges from 139 m to 3194 m (Fig. 1b). In the lower elevation 
areas (<300 m), annual 30-year normal temperatures range from mean 
daily minimums of 0.2–1.4 ◦C in the winter to mean daily maximums of 
24.8–28.3 ◦C in the summer. In the high elevation areas (>1700 m) 
temperatures range from mean daily minimums of − 8.0 to − 1.4 ◦C in 
the winter to mean daily maximums of 19.4–26.0 ◦C in the summer 
(PRISM Climate Group, 2022). Both watersheds are primarily domi
nated by evergreen forests (~80 %) of Douglas-fir (Pseudotsuga menzie
sii), Pacific silver fir (Abies amabilis), and Western hemlock (Tsuga 
heterophylla) (Table 1). The dominant soil textures include Silty Clay 
Loam, Clay Loam, and Cobbly Loam (NRCS, 2025). Geologically, the 
watersheds are situated on volcanic formations of the Cascade Range, 
composed mainly of basaltic and andesitic lava flows, pyroclastic de
posits, and glacial sediments (Tague and Grant, 2004). These charac
teristics influence groundwater–surface water interactions, with 
extensive spring-fed systems in the High Cascade terrain sustaining 
streamflow during the dry season (Jefferson et al., 2006).

In September 2020, three wildfires occurred through the McKenzie 
and North Santiam watersheds, burning a total area of 146,580 ha inside 
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the watersheds perimeters (Fig. 1b). In the McKenzie River sub-basin, 
the Holiday Farm Fire affected approximately 18 % of the sub-basin 
area (56,394 ha). Within the watershed, the wildfire burned at rela
tively high severity with 13.2 % unburned, 14.5 % low, 35.3 % mod
erate, and 37.1 % high severity (Table 2). The Beachie Creek and 
Lionshead Fires burned about 77 % of the North Santiam watershed 
(90,186 ha). The Beachie Creek Fire burned 44.2 % of the sub-basin area 
(51,738 ha) with 16.4 % unburned, 18.4 % low, 30.3 % moderate, and 
34.9 % high severity. The Lionshead Fire burned 38.8 % of the sub-basin 
area (38,448 ha) with 19.9 % unburned, 19.6 % low, 28.6 % moderate, 
and 31.9 % high severity. Given the differences in both the area and 
magnitude of these wildfires across the two sub-basins, we expected the 
magnitude and range of hydrologic responses to differ between the study 
catchments, providing a useful comparison.

Fig. 1. (a) Map showing the location of our study watershed (black circle) in the western United States. Blue and red lines highlight the McKenzie and North Santiam 
watersheds, respectively. (b) Map of the study watersheds and three wildfires burned in 2020 (from north to south: Beachie Creek, Lionshead, and Holiday Farm). In 
the burned areas, aqua, light yellow, orange, and red areas indicate the unburned, low, moderate, and high burned severities. (c) Sub-watersheds and calibration 
locations. Black lines represent the boundaries of the sub-watersheds, black circles indicate the USGS gauging stations for streamflow calibrations, and the green and 
blue circles represent the locations of ET and LAI calibrations (USGS: United States Geological Survey, ET: Evapotranspiration, LAI: Leaf area index). (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1 
General characteristics of the McKenzie and North Santiam watersheds.

McKenzie North Santiam

Watershed Area (ha) 175,141 295,777
Land uses (Natural Resources 

Conservation Service, 
2025; Dewitz and USGS, 
2021)

Evergreen Forest (84 %), 
Shrub (7 %), Barren Land 
(3 %),Pasture/Hay (1 %)

Evergreen Forest (84 
%), Shrub (8 %), 
Pasture/Hay (2 %)

Soils Textures (NRCS, 2025) Silty Clay Loam, Clay 
Loam and Cobbly Loam

Silty Clay Loam, Clay 
Loam and Cobbly 
Loam

Elevation (m) Mean: 1045 
Min: 139 
Max: 3149

Mean: 983 
Min: 146 
Max: 3193
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2.2. SWAT model background and calibration

SWAT is a semi-distributed, continuous, and process-based hydro
logic model developed to simulate the long-term effects of climate and 
land use management on hydrology, sediment transport, and water 
quality in watersheds (Arnold et al., 1998; Neitsch et al., 2011). In our 
study, we used the SWAT 2012 model (rev. 664) with the ArcSWAT 
2012.10.5 interface. Watersheds were delineated into sub-watersheds 
using digital elevation models. Each sub-watershed was further 
divided into hydrologic response units (HRUs), which represent unique 
combinations of land use, soil type, and slope class within each subbasin. 
The use of HRUs enabled us to account for spatial heterogeneity in land 
cover, soil, and topography within the model.

We used a 30 m digital elevation model (DEM) from the National 
Hydrography Dataset (NHD) (U.S. Geological Survey, 2022) for water
shed configuration and topographic parameter estimation. Land use and 
soil inputs were based on 2019 National Land Cover Database (NLCD) 
data (Dewitz and USGS, 2021) and STATSGO2 soils data (NRCS, 2025). 
The Blue River and Cougar Reservoirs in the McKenzie River sub-basin, 
along with the Detroit Reservoir in the North Santiam sub-basin, were 
included in the model simulation by configuring reservoir surface areas 
and volumes for both emergency and principal spillways. Additionally, 
monthly reservoir outflow data were incorporated to account for flow 
alterations caused by the reservoirs (U.S. Army Corps of Engineers, 
2025). For meteorological inputs, we used Daymet precipitation and 
temperature data at a 1-km resolution (Thornton et al., 2022). The 
watershed delineation resulted in 313 sub-watersheds for the McKenzie 
and 203 for the North Santiam sub-basin (Fig. 1c), with the watershed 
outlets set at the approximate drinking water intake locations for Eugene 
(McKenzie) and Salem (North Santiam). Sub-watersheds were then 
divided into HRUs, resulting in 2048 HRUs for the McKenzie and 1248 
HRUs for the North Santiam to represent the pre-fire conditions. To 
reduce computational load, we applied 10 % threshold values for land 
use, soil, and slope, dissolving HRUs that fell below these thresholds into 
existing land use, soil, and slope categories (Her et al., 2015).

Calibration and validation are essential to ensuring the reliability of 
hydrological processes under varying conditions. Daily streamflow was 
calibrated using the SWAT calibration and uncertainty assessment tool 
SWAT-CUP (Abbaspour, 2014) with the SUFI-2 method. The model was 
run on a daily time step, with a 3-year warm-up period. Calibration was 
performed for discharge from January 2011 to August 2020 (pre-wild
fire period), using streamflow data from US Geological Survey (USGS) 
gauge stations (McKenzie: USGS 14164900, North Santiam: USGS 
14183000). Validation was conducted over a separate period from 2001 
to 2010 at the same stations. This design ensured that model parameters 
were calibrated to reflect hydrologic conditions immediately before the 
wildfire, allowing for continuity with the post-fire simulation and 
improved the ability of the model to detect wildfire-driven changes.

To improve SWAT model simulations in forested environments and 
to account for wildfire effects, we compared two calibration processes: 
(1) the default simulation (hereafter referred to as the “default” model), 

which is parameterized for non-forest ecosystems and is calibrated using 
only streamflow data, and (2) a modified simulation (hereafter referred 
to as the “modified” model), which included calibration of streamflow, 
ET, and LAI, designed to more accurately reflect interactions between 
forest processes and hydrological computations within SWAT. Haas 
et al. (2022a, b) proposed this approach to improve representation of 
forest hydrology of the SWAT model by incorporating additional vege
tation dynamics, particularly LAI and ET, into the calibration process. 
For example, LAI is used to calculate plant biomass and evapotranspi
ration partitioning (e.g., canopy evaporation and transpiration), which 
differs greatly between forested and non-forest environments and is 
critical in capturing disturbance effects like those caused by wildfire. For 
ET and LAI calibrations, we used 500 m resolution MOD15A2H (Myneni 
et al., 2015) and MOD16A2 (Running et al., 2017) datasets to derive LAI 
and ET time series data at 8-day intervals for two sub-basins primarily 
composed of evergreen forest (>80 %) (Hass et al., 2022a, b).

Calibration was carried out using the Nash–Sutcliffe Efficiency (NSE; 
Nash and Sutcliffe, 1970) as the primary objective function, as it effec
tively measures the correspondence between observed and simulated 
daily streamflow (Moriasi et al., 2015). The initial parameter ranges 
were established using the default limits provided in the SWAT-CUP 
interface. The number of calibration iterations differed by basin and 
calibration types because the parameter ranges were progressively 
narrowed until all calibration variables reached satisfactory ranges. For 
the McKenzie River sub-basin, the default simulation required three it
erations, whereas the modified calibration required 38 iterations. For 
the North Santiam sub-basin, the default simulation required two iter
ations, and the modified calibration required 15 iterations. Each itera
tion consisted of 1000 simulations, with parameter ranges adjusted 
based on the best-performing parameter sets and constrained by plau
sible values documented in previous SWAT studies (Abbaspour, 2014; 
Abbaspour et al., 2015; Haas et al., 2022a, 2022b; Narsimlu et al., 2015; 
White et al., 2018; Lee et al., 2024; Devkota et al., 2024). Model vali
dation followed a split-sample approach, applying the single best 
parameter set from the calibration to the independent validation period. 
This approach ensured that the model was evaluated under different 
hydrologic conditions without recalibration. For streamflow, model 
performance during calibration was first evaluated against the “Good” 
performance (NSE >0.70) for daily simulations (Moriasi et al., 2015), 
confirming that the model achieved acceptable predictive accuracy.

Parameters used in the default and modified models are listed in 
Table 3, and additional vegetation-related parameters applied in the 
modified model are presented in Table 4. To account for spatial het
erogeneity, separate parameter sets were calibrated for the upstream 
and downstream sub-basins, while basin-level and plant parameters 
were applied uniformly across the watershed. For the McKenzie water
shed, the upstream and downstream areas were divided at the conflu
ence of the Blue River and the South Fork McKenzie River, whereas in 
the North Santiam watershed, the division was defined by the location of 
Detroit Dam, which integrates inflows from multiple upstream tribu
taries. This approach was supported by the SWAT-CUP framework, 

Table 2 
Information of the three wildfires that burned in the North Santiam and McKenzie Basins in 2020. Burn severity classes were categorized based on the difference 
Normalized Burn Ratio (dNBR) values proposed by Key and Benson (2006). The dNBR data is from the monitoring trends in burn severity (MTBS, 2024) website 
(https://mtbs.gov/).

Wildfires Watersheds Total area burned 
(ha)

Burned area in 
watershed (ha)

Burn severity within basin (%)

Unburned 
(dNBR≪ 
100)

Low (dNBR ≥ 100 and 
< 270)

Moderate (dNBR ≥ 270 and 
< 660)

High (dNBR ≥
660)

Holiday 
Farm

McKenzie 70,169 56,394 13.2 14.5 35.3 37.1

Beachie 
Creek

North 
Santiam

78,333 51,738 16.4 18.4 30.3 34.9

Lionshead North 
Santiam

82,794 38,448 19.9 19.6 28.6 31.9
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which allows spatially differentiated parameterization. In the modified 
(multi-variable) calibration, we assigned weights of 0.3 to streamflow, 
0.2 to LAI, and 0.25 to ET in each of the two sub-watersheds, resulting in 
a total weight of 1. This weighting scheme balanced hydrologic and 
vegetation components and ensured that no single variable dispropor
tionately influenced the calibration outcome.

Given that evergreen forest covers more than 80 percent of both 
study basins, vegetation dynamics such as ET and LAI were expected to 
be relatively homogeneous across the study area. Therefore, calibration 
with MODIS-based observations in representative areas was considered 
to capture the dominant basin-wide vegetation signals. This approach 
was supported by Haas et al. (2022a, b), who reported that 
sub-watershed calibration using representative forested areas can 
effectively capture vegetation process in forested watersheds. In both 
the McKenzie and North Santiam watersheds, we selected two forested 
sub-watersheds for ET and one HRU for LAI calibration. For ET cali
bration, the selected sub-watersheds were 304 (1404 ha) and 125 (1349 
ha) in the McKenzie basin, and 37 (816 ha) and 121 (1840 ha) in the 
North Santiam basin, representing upstream and downstream locations 
(Fig. 1c). For LAI calibration, we selected one evergreen forest HRU in 
each basin, and they are HRU 2037 in McKenzie (323 ha) and HRU 221 
in North Santiam (231 ha). This targeted calibration strategy also helped 
reduce model complexity and minimize parameter equifinality 
compared to full-watershed calibration that selected multiple 
sub-watersheds to cover the entire watershed, which involves a larger 
number of parameters that can complicate model optimization 
(Abbaspour et al., 2015; Yang et al., 2008).

After calibration, model evaluation of the two simulations was con
ducted using both statistical and graphical approaches. Streamflow 
performance was evaluated at point locations (USGS gauge stations) 
using NSE, coefficient of determination (R2), root mean square error 
(RMSE), and percent bias (PBIAS). ET and LAI simulations were 
compared with MODIS observations (Myneni et al., 2015; Running et al., 
2017) at the catchment level using the same set of statistical metrics and 
graphical approaches. Water-balance partitioning was also compared 
between the default and modified models using long-term averages of 
ET, baseflow, lateral flow, and surface runoff, summarized as percentage 
contributions to total precipitation.

2.3. Wildfire module and evaluation

In addition to the modified calibration technique described above, 
we incorporated the SWAT wildfire module developed by Wampler et al. 
(2023), which modified multiple soil and vegetation parameters based 
on burn severities in the SWAT model to represent the effects of wild
fires. In SWAT simulations, we set the fire date to September 7, 2020, 
which marked the beginning of the Holiday Farm fire and the rapid 
expansion of the other two wildfires. To assign fire severities to each 
HRU, we employed the “Zonal Statistics as Table” tool in ArcMap to 
compute the mean dNBR (differenced normalized burn ratio; Key and 
Benson, 2006) values for each HRU. The burn severity and burned pe
rimeters data were provided by the Monitoring Trends in Burn Severity 
(“MTBS,” 2024), and the averaged burn severity was used to classify 
low, moderate, and high burn severity categories. We selected dNBR 
values at <100 for unburned, <270 for low burn severity, <660 for 
moderate burn severity, and ≥ 660 for high burn severity (Key and 
Benson, 2006), and dNBR-based classification is widely applied to assess 
fire-induced changes in vegetation and soil properties, as it captures the 
degree of organic matter consumption and canopy alteration (Keeley, 
2009).

The wildfire module accounts for the impacts of wildfires by 
adjusting several critical model parameters. These adjustments included 

Table 3 
Summary of SWAT calibrated parameters for both default and modified models.

Parameter Description Range

Min Max

r_ CN2.mgt SCS runoff curve number − 0.3 0.3
v_ALPHA_BF. 

gw
Baseflow alpha factor (days) 0.2 0.6

v_GW_DELAY. 
gw

Groundwater delay (days) 100 400

v_GWQMN.gw Threshold depth of water in the shallow 
aquifer required for return flow to occur 
(mm)

0 1000

v_ESCO.hru Soil evaporation compensation factor 0.01 1
v_EPCO.hru Plant uptake compensation factor 0.01 1
v_SOL_AWC. 

sol
Available water capacity of the soil layer 
(mm H2O/mm soil)

0 1

r_ SOL_K.sol Saturated hydraulic conductivity (mm/ 
hr)

− 0.3 0.3

r_ SOL_BD.sol Moist bulk density (g/cm3) − 0.5 0.3
v_GW_REVAP. 

gw
Groundwater “revap” coefficient 0.02 0.2

v_SURLAG.hru Surface runoff lag time (days) 1 24
v_OV_N.hru Manning's "n" value for overland flow 0.01 1
v_TIMP.bsn Snow pack temperature lag factor 0 1
v_SFTMP.bsn Snowfall temperature (◦C) − 10 10
v_SMTMP.bsn Snow melt base temperature (◦C) − 10 10
v_SMFMX.bsn Maximum melt rate for snow during year 

(mm H2O/◦C-day)
0 5

v_SMFMN.bsn Minimum melt rate for snow during the 
year (mm H2O/◦C-day)

0 5

v_CANMX.hru Maximum canopy storage (mm H2O) 0 100
r_SLSUBBSN. 

hru
Average slope length (m) − 0.2 0.2

r_HRU_SLP.hru Average slope steepness (m/m) − 0.3 0.3
v_CH_K2.rte Effective hydraulic conductivity in main 

channel alluvium
0.01 500

v_CH_N2.rte Manning's “n" value for the main channel 0.001 1
r_ SOL_Z.sol Depth from soil surface to bottom of layer − 0.5 0.5
v_LAI_INIT.mgt Initial leaf area index (m2/m2) 0 3
v_PHU_PLT. 

mgt
Total number of heat unit 1000 3000

Note: v_, denotes the default parameter is replaced by a given value; r_, means 
the existing parameter value is multiplied by (1 + a given value).

Table 4 
Summary of SWAT calibrated parameters for the modified model (user-defined 
forest parameters which impact watershed hydrological processes) (Haas et al., 
2022a; 2022b).

Parameter Description Range

Min Max

v_GSI in plant.dat Max stomatal conductance (m*s− 1) 0.001 0.1
v_CHTMX in plant. 

dat
Max canopy height (m) 0.1 20

v_RDMX in plant. 
dat

Max root depth (m) 0 3

v_VPDFR in plant. 
dat

Vapor pressure deficit corresponding to 
the fraction maximum stomatal 
conductance (kPa)

0.7 3.7

v_BIO_E in plant. 
dat

Biomass/Energy Ratio ((kg/ha)/(MJ/ 
m2))

0.1 50

v_BLAI in plant. 
dat

Max leaf area index 0.5 5

v_T_OPT in plant. 
dat

Optimal temperature (temp) for plant 
growth (◦C)

10 30

v_T_BASE in plant. 
dat

Min temp plant growth (◦C) 0 4

v_BIO_LEAF in 
plant.dat

Fraction of tree biomass converted to 
residue during dormancy

0 1

v_EXT_COEF in 
plant.dat

Light extinction coefficient 0.1 2

v_BMX_TREES in 
plant.dat

Maximum biomass for a forest (metric 
tons/ha)

100 1000

v_ALAI_MIN in 
plant.dat

Minimum leaf area index for plant 
during dormant period (m2/m2)

0 1

v_DLAI in plant. 
dat

Fraction of growing season when leaf 
area starts declining

0.15 1

Note: v_, denotes the default parameter is replaced by a given value.
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modifications to available water capacity, bulk density, soil and plant 
evaporative compensation factors, curve number, Manning's n for 
overland flow, and land use. The parameter modifications were initiated 
from the date of the wildfire event, reflecting the immediate and long- 
term effects of the fire on the landscape. Using the model with 
adjusted parameters, we ran the model for three years following the 
fires, as data were available only for this period, and compared the re
sults with baseline simulations (SWAT-normal). To assess the accuracy 
of the wildfire simulations (SWAT-fire), we compared simulated 
streamflow and ET of the normal and wildfire simulations with observed 
streamflow data and remotely sensed ET for pre- and post-fire periods. 
We ran both the SWAT-normal and SWAT-fire simulations using the 
modified calibration that incorporated streamflow, ET, and LAI. 
Wildfire-related parameter modifications were applied only to the 
SWAT-fire simulation to represent the effects of wildfire. Detailed de
scriptions of these parameter changes are available from Wampler et al. 
(2023) and summarized in Table 5.

After applying the wildfire module, streamflow performance was 
evaluated under both overall and high-flow conditions (>90th percen
tile of daily discharge) to assess model behavior after wildfires. ET and 
runoff responses to wildfire severity were further analyzed at the sub- 
watershed scale. Box-and-whisker plots were used to summarize 
spatial variability across burn-severity classes (unburned, low, moder
ate, and high), while scatter plots with dNBR were used to quantify the 
relationships between burn severity and percent changes in ET and 
runoff. Water-balance partitioning was also evaluated by comparing the 
relative contributions of ET, surface runoff, lateral flow, and baseflow 
between the SWAT-normal and SWAT-fire simulations to assess wildfire- 
induced changes in hydrologic processes.

3. Results

3.1. Base model calibration for forested systems

The default and modified calibration procedures produced similar 
streamflow simulations in both watersheds (Table 6). Also, the final 
calibrated parameter values for the default and modified models are 
provided in the Supplementary material (Table S1–S3). In the McKenzie 
watershed, the modified model slightly outperformed the default during 
the calibration period (NSE = 0.88 vs. 0.87; R2 = 0.90 vs. 0.88), while 
validation results were similar. In the North Santiam watershed, both 
models showed modest differences, with NSE ranging from 0.67 to 0.74 
and R2 from 0.70 to 0.78 across periods. Full performance metrics are 
provided in Table 6. To complement these statistical results, the 
observed and simulated hydrographs for both watersheds are presented 
in the Supplementary Materials (Fig. S1–S2). These figures present that 
both the default and modified simulations reproduced the seasonal 
variability of streamflow well, and the NSE values for both watersheds 
indicate Good (NSE >0.70) to Very Good (NSE >0.85) model perfor
mance (Moriasi et al., 2015).

The SWAT model captured general seasonal variation in ET (NSE >0) 
across all sites using both the default and modified models (Fig. 2). 
However, the default model tended to underestimate ET in summer and 

overestimate it in winter, while the modified calibration reduced these 
biases. For instance, in sub-watershed 125 (McKenzie) NSE improved 
from 0.18 (default) to 0.48 (modified), while in 121 (North Santiam) the 
NSE improved from 0.38 (default) to 0.60 (modified). These improve
ments were also reflected in improved R2 and PBIAS values (Table 6), 
indicating better seasonal agreement with MODIS ET.

The modified LAI parameterization substantially improved LAI 
simulations compared to the default model, which was not calibrated for 
forested systems (Fig. 3). In both HRU 2037 (McKenzie) and HRU 221 
(North Santiam), the default model failed to capture seasonal dynamics 
(NSE <0), while the modified model reproduced typical seasonal pat
terns, including the spring increase and late-summer decline in 
streamflow, with NSE improving to 0.66 and 0.45, respectively in the 
two sub-basins. These results demonstrated that forest-specific param
eterization enhanced the model's ability to simulate vegetation dy
namics in fire-prone watersheds (Table 6). In addition, we compared 
SWAT-simulated monthly ET and LAI values against MODIS observa
tions for the entire McKenzie and North Santiam watersheds using the 
calibrated parameters to evaluate whether sub-watershed-based cali
bration effectively captured basin-wide vegetation dynamics. As shown 
in Figs. S3 and S4 in the Supplementary Material, SWAT successfully 
reproduced seasonal patterns and magnitudes of ET, with NSE values of 
0.78 for McKenzie and 0.86 for North Santiam during the calibration 
period (2011–August 2020) (Fig. S3). Similarly, SWAT captured sea
sonal LAI dynamics, with NSE values of 0.31 for McKenzie and 0.52 for 
North Santiam (Fig. S4). These results are consistent with those obtained 
in the representative sub-watersheds used for calibration (Figs. 2 and 3), 
indicating that the selected areas adequately represented vegetation 
behavior across the basins.

3.2. Comparison of water balance partitioning

In addition to the improvements in ET and LAI estimations, the 
modified parameterization led to clear differences in water balance 
partitioning. Both models indicated that ET and lateral flow was the 
dominant component of the water budget for both the McKenzie and 
North Santiam River sub-basins during the calibration and validation 
period from 2001 to September 2020. For the McKenzie River sub-basin, 
ET and lateral flow accounted for 35.6 % and 29.4 % of the water budget 
in the default model, while baseflow accounted for 26.7 %, and surface 
runoff accounted for 8.4 % (Fig. 4a). Under the modified model, ET and 
lateral flow increased to 37.8 % and 35.8 % while baseflow decreased 
slightly to 23.1 % and surface runoff decreased more substantially to 3.3 
%. Considering only total runoff, the contributions of surface runoff 
were 17.5 % from the default model and 10.1 % from the modified 
model.

Similar patterns were observed in the North Santiam River sub-basin. 
In the modified model, baseflow increased from 12.7 % to 21.2 %, while 
surface runoff decreased from 12.0 % to 7.1 % (Fig. 4b). Lateral flow 
remained the largest runoff component, accounting for about 42–43 % 
in both models, indicating that subsurface flow dominates hydrologic 
responses in this basin. ET also decreased slightly from 31.5 % to 29.6 %, 
but the seasonal pattern of ET was improved under the modified model 
(Fig. 2b), likely reflecting the influence of revised water-balance parti
tioning. These results from both sub-basins highlight the shift toward 
stronger subsurface contributions and reduced surface runoff under the 
modified calibration, consistent with the hydrologic characteristics of 
the western Cascade watersheds (McGuire and McDonnell, 2010).

3.3. Wildfire simulation

3.3.1. Comparison of simulated runoff and ET before and after wildfire for 
SWAT-normal and SWAT-fire simulations

Simulation results from SWAT-fire showed slight increases in 
streamflow (3.1 % in the McKenzie and 4.8 % in the North Santiam) 
compared to SWAT-normal, especially during the wet seasons (October 

Table 5 
Summary of parameters modified in the wildfire module (Wampler et al., 2023).

Parameter Replacement type Change based on fire severity

Low Moderate High

SOL_AWC relative − 25 % − 70 % − 90 %
SOL_BD relative 1 % 9 % 13 %
ESCO replace 0.5 0.8 1
EPCO replace 0.5 0.2 0.01
CN2 additive 10 20 30
OV_N replace 0.8 0.4 0.011
Land Use replace FRSE RNGE BARR
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to March) (Fig. 5). Overall performance of streamflow simulations were similar between SWAT-fire and SWAT-normal during the post-fire 

Table 6 
Results of calibration and validation for the default and modified model.

Watersheds Calibration/ 
Validation

Evaluation 
criteria

Default model Modified model

Streamflow ET 
subbasin 
125

ET 
subbasin 
304

LAI 
HRU 
2037

Streamflow ET subbasin 
125

ET subbasin 
304

LAI 
HRU 
2037

McKenzie Calibration 
(2011–Aug 2020)

NSE 0.87 0.18 0.44 − 0.85 0.89 0.49 0.47 0.66
R2 0.88 0.34 0.69 0.02 0.90 0.56 0.79 0.73
RMSE 34.51 1.30 0.72 1.07 33.65 1.02 0.70 0.46
PBIAS (%) 5.00 21.41 − 20.30 − 19.84 4.16 13.01 − 20.77 4.42

Validation 
(2001–2010)

NSE 0.78 0.13 0.22 − 0.57 0.73 0.45 0.23 0.61
R2 0.82 0.28 0.66 0.00 0.82 0.50 0.75 0.69
RMSE 41.62 1.28 0.76 1.09 46.88 1.01 0.76 0.54
PBIAS 10.74 14.21 − 26.23 12.94 9.73 7.59 − 26.84 1.34

North 
Santiam

Calibration 
(2011–Aug 2020)

NSE 0.74 0.41 0.38 − 0.74 0.71 0.45 0.60 0.45
R2 0.78 0.57 0.47 0.21 0.76 0.53 0.62 0.69
RMSE 38.89 0.95 1.02 1.69 40.86 0.92 0.82 0.95
PBIAS 13.07 − 8.07 6.49 43.09 11.14 2.70 5.94 13.21

Validation 
(2001–2010)

NSE 0.67 0.10 0.41 − 0.47 0.69 0.41 0.61 0.66
R2 0.70 0.51 0.49 0.09 0.72 0.51 0.62 0.71
RMSE 43.37 1.07 0.96 1.87 41.89 0.87 0.78 0.90
PBIAS 15.32 − 15.73 0.06 38.17 11.77 − 2.83 5.65 11.29

Fig. 2. Comparisons of monthly average ET from the default and improved calibration technique. The monthly average was determined by averaging the daily data, 
not the sum of daily data. Black lines indicate the remote sensing observations (MODIS: Moderate Resolution Imaging Spectrometer), and gray and dashed lines 
represent the ET estimates from SWAT. (a) Results of the McKenzie watershed (sub-watershed 125). (b) Results of the North Santiam watershed (sub-watershed 121).
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period. In the McKenzie and North Santiam watersheds, both simula
tions achieved identical NSE values (0.88 in McKenzie and 0.66 in North 
Santiam), although the PBIAS was slightly more accurate for the SWAT- 
fire simulation compared to the normal simulation (Fig. 5). However, 
the SWAT-fire simulation demonstrated superior performance in simu
lating high flow conditions (>90th percentile) in both watersheds. In the 
McKenzie watershed, the NSE for high flow was 0.85 for the SWAT-fire 
simulation, compared to 0.53 for the SWAT-normal simulation (Fig. 5b). 
Likewise, in the North Santiam watershed, the SWAT-fire simulation 
generated better simulation (NSE = 0.03), outperforming the SWAT- 
normal simulation (NSE = − 0.65) (Fig. 5d).

Increased streamflow was primarily driven by enhanced surface 
runoff in burned sub-watersheds. In the McKenzie sub-basin, runoff in
creases were consistently higher in areas with greater burn severity and 
were most pronounced in 2022, the wettest post-fire year (1965 mm of 
precipitation), compared to 2021 (1710 mm) and 2023 (1636 mm) 
(Fig. 6a–c). Linear regression analysis confirmed a strong positive rela
tionship between runoff change and burn severity, with R2 values 
ranging from 0.68 to 0.81 (Fig. 6d–f). A similar pattern was observed in 
the North Santiam watershed, where runoff increases also scaled with 
burn severity and peaked in 2022. The strength of correlation between 
runoff changes and dNBR ranged from 0.53 to 0.79, reinforcing the 
consistent influence of burn severity across years and watersheds 
(Fig. 7a–f).

The severe wildfires in 2020 led to substantial reductions in ET 

during the post-fire period (October 2020 to September 2023). Relative 
to the SWAT-normal simulation, there was an overall decrease in ET in 
the SWAT-fire simulation, with the magnitude of changes increasing 
with burn severity. In the McKenzie watershed, remote sensing data 
indicated ET decreases of − 31.6 % in 2021, -22.9 % in 2022, and -33.2 % 
in 2023 in burned areas, relative to the pre-fire period (annual average 
from October 2011 to September 2020) (Fig. 8a). The SWAT-fire model 
simulated similar ET reductions, with − 28.6 % in 2021, -28.3 % in 2022, 
and -36.7 % in 2023. In contrast, the SWAT-normal simulations showed 
minimal changes or remained stable compared to the pre-fire period. 
Likewise, in the North Santiam watershed, remote sensing data showed 
ET reductions of − 29.8 % in 2021, -26.1 % in 2022, and -56.0 % in 2023 
(Fig. 8b). SWAT-fire simulated reductions of − 15.7 % in 2021, -11.6 % 
in 2022, and -23.2 % in 2023, outperforming the SWAT-normal simu
lation. These findings suggest that the SWAT-fire simulation more 
accurately represents post-fire ET dynamics and better reflects post-fire 
hydrologic conditions compared to the SWAT-normal simulation.

Burn severity was negatively associated with simulated ET from the 
SWAT-fire model in both the McKenzie and North Santiam watersheds 
(Figs. 9 and 10). In the McKenzie watershed, ET declined more in areas 
with higher burn severity, with annual reductions ranging from 
approximately 16 %–39 % across the three post-fire years. The North 
Santiam watershed showed a similar pattern, with reductions ranging 
from about 13 % to 32 %. These consistent trends across years and 
watersheds highlight the strong influence of burn severity on post-fire 

Fig. 3. Comparisons of monthly average LAI from the default and improved calibration technique. Black lines indicate the remote sensing observations (MODIS), and 
gray and dashed lines represent the LAI estimates from SWAT. (a) Results of the McKenzie watershed (HRU, 2037). (b) Results of the North Santiam watershed 
(HRU 221).
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ET dynamics.

3.3.2. Water balance partitioning
In the McKenzie River sub-basin, where the burned areas are pri

marily located in the downstream regions, the water balance in the 
burned sub-watersheds from the normal simulation is quite different 
from that of the entire watershed, specifically for the baseflow contri
bution (Fig. 4a). The SWAT-normal simulation estimated ET accounted 
for 38.5 %, lateral flow 48.3 %, baseflow 7.5 %, and surface runoff only 
5.7 %. The SWAT-fire simulation showed substantial changes: ET 
sharply decreased to 28.6 %, surface runoff surged to 19.3 %. Lateral 
flow remained the dominant runoff component (43.6 %), and baseflow 
showed a slight increase to 8.5 %. These results indicate that wildfire- 
induced reductions in canopy cover and soil infiltration capacity 
enhanced surface runoff and reduced ET (Fig. 11a).

In the North Santiam River sub-basin, where burned areas are 
distributed throughout the entire watershed, the SWAT-normal simu
lation indicated that ET comprised 38.5 %, lateral flow 45.5 %, baseflow 
19.2 %, and surface runoff 7.2 % of the total water balance, which is 
similar to the water balance composition of the entire watershed 
(Fig. 4b). However, significant shifts were observed in the SWAT-fire 
simulation, with ET decreasing to 23.2 %, lateral flow declining 32.1 
%, baseflow dropping to 17.3 %, and surface runoff surging to 27.4 %. 
These results also suggest that wildfires substantially increase surface 
runoff and decrease ET, altering the primary water balance components 
(Fig. 11b). The significant increase in surface runoff and a corresponding 
decrease in ET observed in the SWAT-fire simulations highlight the 
impacts of fire on water balance partitioning.

4. Discussion

In our study of two burned sub-basins in Oregon, USA, we demon
strated how calibration of the SWAT model for forest and wildfire dy
namics improved simulation of seasonal and post-fire hydrological and 
vegetation fluxes. Our approach resulted in improved simulations of 
wildfire-induced hydrologic fluxes of seasonal runoff, peak streamflow, 
water balance, ET, and LAI, which were poorly represented by SWAT 
simulations that used conventional calibration methods. Moreover, we 
demonstrate that fire severity-mediated hydrological dynamics can be 
effectively captured by holistic calibration of SWAT. Our results showed 
that wildfires redistribute water resources, with reduced vegetation 
cover contributing to decreased ET and greater runoff. These hydro
logical alterations could have long-term implications for water avail
ability, flood risk, and ecosystem recovery in post-fire landscapes.

The modified calibration improved hydrological simulations in the 
forested watersheds, as indicated by enhanced streamflow, ET, and LAI 
predictions. For instance, the modified model notably corrected seasonal 
variations ET, closely aligning with remote-sensing observations. In 
addition, the modified parameterization improved the representation of 
water balance partitioning by reducing surface runoff and strengthening 
subsurface contributions, which dominate flow generation in the 
Cascade catchments. Specifically, in the McKenzie watershed, surface 
runoff decreased from 8.4 % to 3.3 %, while combined subsurface flow 
(lateral + baseflow) increased from 56.1 % to 58.9 %. Similarly, in the 
North Santiam watershed, surface runoff decreased from 12.0 % to 7.1 
%, and subsurface flow increased from 56.5 % to 63.3 % (Fig. 4). This 
improvement in water balance partitioning has significant implications 
for water resource management, particularly in regions where subsur
face contributions influence streamflow. These shifts also underscore the 

Fig. 4. Average annual water balance under default and improved model parameterization. (a) McKenzie watershed. (b) North Santiam watershed.
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Fig. 5. Comparison of streamflow from USGS observations, SWAT-fire, and SWAT-normal simulations. Blue lines represent USGS observations, purple lines indicate 
SWAT-fire simulations, and green dashed lines show SWAT-normal simulations. (a) Daily streamflow comparison in the McKenzie watershed at USGS station 
14164900. (b) Daily streamflow above the 90th percentile at the same location as (a). (c) Daily streamflow comparison in the North Santiam watershed at USGS 
station 14183000. (d) Daily streamflow above the 90th percentile at the same location as (c). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 6. (a–c) Box and whisker plots showing simulated runoff change (%) of the burned sub-watersheds from SWAT-fire across different burn severities for each post- 
fire year in the McKenzie watershed (2021–2023). The boxes represent the interquartile range (IQR) with the 25th percentile, median, and 75th percentile values, 
while the whiskers extend to the minimum and maximum values. The ‘x' symbol indicates the mean. (d–f) Scatter plots illustrating the relationship between runoff 
change and dNBR (Differenced Normalized Burn Ratio) for each post-fire year (2001–2023).
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Fig. 7. (a–c) Box and whisker plots showing simulated runoff change (%) of the burned sub-watersheds from SWAT-fire across different burn severities for each post- 
fire year in the North Santiam watershed. The boxes represent the 25th percentile, median, and 75th percentile values, while the whiskers extend to the minimum 
and maximum values. The ‘x' symbol indicates the mean. (d–f) Scatter plots illustrating the relationship between runoff change and dNBR for each post-fire year.

Fig. 8. Comparison of monthly total ET in the burned sub-watersheds based on MODIS observations, SWAT-fire simulations, and SWAT-normal simulations. Blue 
lines represent MODIS observations, purple lines indicate SWAT-fire simulations, and green dashed lines illustrate SWAT-normal simulations. (a) McKenzie 
watershed; (b) North Santiam watershed.
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importance of interpreting subsurface contributions within an appro
priate hydrologic framework.

In SWAT, lateral flow and baseflow are represented as distinct 

components, whereas many hydrologic studies define baseflow more 
broadly as the portion of streamflow sustained by groundwater and 
other delayed subsurface pathways, including contributions from 

Fig. 9. (a–c) Box and whisker plots showing simulated ET change (%) of the burned sub-watersheds from SWAT-fire across different burn severities for each post-fire 
year in the McKenzie watershed. The boxes represent the 25th percentile, median, and 75th percentile values, while the whiskers extend to the minimum and 
maximum values. The ‘x' symbol indicates the mean. (d–f) Scatter plots illustrating the relationship between ET change and dNBR for each post-fire year.

Fig. 10. (a–c) Box and whisker plots showing simulated ET change (%) of the burned sub-watersheds from SWAT-fire across different burn severities for each post- 
fire year in the North Santiam watershed. The boxes represent the 25th percentile, median, and 75th percentile values, while the whiskers extend to the minimum 
and maximum values. The ‘x' symbol indicates the mean. (d–f) Scatter plots illustrating the relationship between ET change and dNBR for each post-fire year.
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interflow (Price, 2011; Singh et al., 2019; Stoelzle et al., 2020). This 
difference in terminology highlights that subsurface pathways are not 
always conceptualized consistently across modeling and observational 
studies. Consequently, this broader usage can cause confusion in dis
tinguishing lateral and groundwater contributions. Recent modeling 
studies further showed that shallow subsurface pathways, including 
lateral flow, can play a dominant role in streamflow generation in 
geologically complex or steep terrains (Sánchez-Gómez et al., 2024), 
illustrating that lateral contributions can be substantial under certain 
landscape conditions. These insights are important for interpreting our 
water-balance results because the study watersheds are located in the 
western Cascades, where steep topography and shallow flow paths 
strongly influence runoff generation. In our study basins, subsurface 
processes exert a major influence on total streamflow, with lateral flow 
contributing substantially to the overall subsurface component. This 
interpretation aligns with conceptual hydrologic understanding of the 
western Cascades, where subsurface pathways frequently play an 
important role in flow generation (McGuire and McDonnell, 2010). 
Based on the modified calibration and the SWAT-fire simulation, we 
demonstrated post-fire hydrologic dynamics, including increased runoff, 
elevated streamflow, and reduced ET. Specifically, the SWAT-fire 
simulation accurately captured notable reductions in ET and improved 
simulations of high streamflow events, highlighting the sensitivity of 
hydrologic responses to fire-induced parameter adjustments. We also 
found that those hydrological changes were strongly related to fire 
severity, reinforcing conclusions from previous studies.

Our findings are consistent with several previous studies, including 
Kang et al. (2024), who reported substantial ET reductions and 
increased runoff post-wildfire using remote sensing and field-based 

observations. Similarly, Wampler et al. (2023) observed increases in 
post-fire streamflow, which was correlated with burn severity, under
scoring the critical role of vegetation loss in altering hydrological re
gimes. Other studies have also observed greater reductions in ET and 
increases in runoff in watersheds burned at high severity compared to 
lower severity burns (Hallema et al., 2018; Wine et al., 2018). These 
results emphasized the critical role of fire severity in mediating post-fire 
hydrological responses. Moreover, our results emphasized the impor
tance of careful representation of burn severity to accurately predict the 
magnitude of hydrological responses in post-fire hydrological modeling. 
Integrating these insights into hydrological models, such as SWAT-fire, 
can enhance predictive capabilities for forested watersheds impacted 
by wildfire events.

Despite these methodological advancements, several uncertainties 
remain in the wildfire simulation. The wildfire module simplified 
complex post-fire processes, including changes in soil hydraulic prop
erties and evolving surface characteristics. Recent studies have high
lighted the complexity of wildfire-induced alterations in soil properties 
based on field observations, revealing inconsistencies with our study. 
For instance, Pimont (2024) reported no notable differences in soil hy
draulic properties across burn severities in the Pacific Northwest, but 
unexpected increases in hydraulic conductivity were found in the 
burned areas. These findings contrasted with our model assumptions, 
which anticipated increased runoff due to reduced infiltration capacity 
after wildfires, highlighting limitations in current modeling frameworks 
and the need for improved post-fire soil hydraulic information.

Moreover, ET calibration was conducted with remote sensing ob
servations that have limitations in capturing site-specific variability. For 
example, MODIS ET products may underestimate actual ET in densely 

Fig. 11. Average annual water balance under the SWAT-normal and SWAT-fire simulations during the post-fire years (October 2020 to September 2023) in the 
burned sub-watersheds. (a) McKenzie watershed. (b) North Santiam watershed.
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forested regions (Mu et al., 2011). The accuracy of remote sensing-based 
ET estimates potentially affect model calibration outcomes. While the 
modified model generated better ET simulations compared to the default 
model, uncertainties in ET observations and post-fire vegetation re
sponses remain important factors influencing the accuracy of hydrologic 
predictions. Addressing these limitations through long-term monitoring 
and improved parameterization considering vegetation recovery would 
enhance future wildfire-hydrology modeling efforts.

The temporal scale of our study, spanning three years post-fire, 
provided valuable insights into immediate hydrologic responses but 
represented only the initial stages of hydrologic recovery. Post-fire re
covery trajectories typically extended over multiple years or even de
cades (Ebel et al., 2022; Holden et al., 2012; Niemeyer et al., 2020). 
Thus, our simulations likely captured only the initial hydrological re
sponses and may not fully reflect longer-term recovery processes 
involving vegetation regrowth, soil structure stabilization, and 
ecosystem recovery dynamics. Ebel et al. (2022) provided a compre
hensive framework for assessing hydrologic recovery, emphasizing 
evaluating multiple metrics, such as soil infiltration, vegetation cover, 
runoff generation, and channel responses over varying temporal scales. 
Their study highlighted the complexity and variability inherent in hy
drologic recovery, suggesting that vegetation regrowth rates, manage
ment practices, and regional climatic conditions influence recovery 
trajectories. Furthermore, climatic variability, management practices, 
and other landscape disturbances occurring concurrently or after wild
fires can significantly influence hydrologic responses to wildfires.

In addition, our study primarily examined immediate post-fire hy
drologic impacts and did not explicitly incorporate the potential inter
active effects of climate variability, such as droughts or unusually wet 
conditions, nor management interventions like salvage logging and 
reforestation efforts. Previous studies have highlighted that these factors 
significantly influence hydrologic responses following wildfires (Ebel 
et al., 2022; Wagenbrenner et al., 2021). A key advancement from our 
work is developing a robust model calibration approach, which can be 
leveraged to investigate these longer-term effects and their interactions 
with climatic variables and management strategies. Incorporating these 
considerations in future modeling will enhance our understanding of 
watershed dynamics post-fire and improve predictive accuracy. 
Although this study utilized SWAT 2012, the calibration framework and 
wildfire-specific parameter adjustment presented here are compatible 
with the structure of SWAT+, which includes enhanced spatial repre
sentation and the capacity to simulate fire operations through its land 
management module (Bieger et al., 2017). Future work integrating these 
approaches into SWAT + would allow for a more flexible and 
process-oriented simulation of post-fire hydrologic dynamics across 
interconnected landscape units.

Finally, our current wildfire simulation utilized fixed adjusting pa
rameters for the entire post-fire period, which may not always be real
istic. Some studies have shown that post-fire processes, such as debris 
flows, primarily occur within the first year following wildfire. For 
instance, DeGRAFF et al. (2015) reported that the majority (85 %) of 
debris flows occurred within 12 months post-fire, with 71 % within the 
first six months. Similarly, Santi and Morandi (2013) noted that debris 
flows from burned areas predominantly occurred within the first year. 
Their findings suggested that the adjusted parameters should ideally be 
dynamic rather than static over time to represent post-fire watershed 
dynamics accurately.

5. Conclusion

In our study, we used a modified calibration technique that incor
porated a more explicit forest and wildfire module into SWAT to 
improve simulation of post-fire hydrologic responses in our study wa
tersheds in Oregon, USA. By calibrating the model for ET fluxes and 
recovery of LAI in forest ecosystems, in conjunction with streamflow, 
SWAT was able to provide a more accurate depiction of wildfire severity 

effects on water balance and hydrological dynamics. Our model simu
lations performed well at representing the variability in decreased ET 
and corresponding increases in streamflow that were generally driven 
by differences in burn severity. As such, our model outputs were 
generally consistent with observations from the study watersheds.

These findings are particularly relevant in regions like the Pacific 
Northwest, where large, high severity wildfires are occurring more 
frequently. The improved accuracy of these simulations can inform 
water and forest managers in wildfire-prone regions, providing them 
with valuable tools for better planning and mitigation strategies, such as 
evaluating future wildfire scenarios and refining region-specific man
agement strategies based on projected climate and fire severity changes. 
Anticipating changes in ET and streamflow after wildfire would help to 
develop more proactive responses to protect water resources, enhance 
ecosystem recovery, and reduce the risks associated with wildfire im
pacts on water supply and quality.
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Software and data availability

• Name of software: Soil and Water Assessment Tool (SWAT)
• Developers: United States Department of Agriculture (USDA), Agri

cultural Research Service (Dr. Jeff Arnold)
• Year first available: 1998
• Contact: https://swat.tamu.edu/support/
• Cost: Free
• Program language: Fortran
• Software availability and source code: https://swat.tamu.edu/softw 

are/swat/
• Documentation: Detailed documentation for application installation, 

testing, and deployment can be found at https://swat.tamu.edu/
• Data availability: 

○ The observed streamflow data can be downloaded free of charge 
from the United States Geological Survey (USGS) National Water 
Information System (NWIS) at: https://waterdata.usgs.gov/nwis.

The specific stream gage sites used in this study are publicly 
accessible and were selected based on data availability and 
proximity to the study watersheds.

○ The MODIS evapotranspiration (ET) data used for model calibra
tion are freely available from the NASA Earthdata portal: https: 
//lpdaac.usgs.gov/products/mod16a2v061/

The MOD16A2 Version 6 dataset provides 8-day composite ET 
estimates at 500 m resolution globally.

○ The MODIS Leaf Area Index (LAI) data used in the analysis can be 
downloaded from NASA's LP DAAC: https://lpdaac.usgs.gov/pro 
ducts/mcd15a2hv061/.

○ The burn severity data based on differenced Normalized Burn 
Ratio (dNBR) were obtained from the Monitoring Trends in Burn 
Severity (MTBS) project at: https://www.mtbs.gov.

MTBS provides standardized burn severity maps for large wild
fires across the United States.
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